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Simulation of natural fragmentation of rings cut from warheads
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Abstract
Natural fragmentation of warheads that detonates causes the casing of the warhead to split into various sized fragments through shear or
radial fractures depending on the toughness, density, and grain size of the material. The best known formula for the prediction of the size
distribution is the Mott formulae, which is further examined by Grady and Kipp by investigating more carefully the statistical most random way
of portioning a given area into a number of entities. We examine the fragmentation behavior of radially expanding steel rings cut from a 25 mm
warhead by using an in house smooth particle hydrodynamic (SPH) simulation code called REGULUS. Experimental results were compared
with numerical results applying varying particle size and stochastic fracture strain. The numerically obtained number of fragments was
consistent with experimental results. Increasing expansion velocity of the rings increases the number of fragments. Statistical variation of the
material parameters influences the fragment characteristics, especially for low expansion velocities. A least square regression fit to the cu-
mulative number of fragments by applying a generalized Mott distribution shows that the shape parameter is around 4 for the rings, which is in
contrast to the Mott distribution with a shape parameter of ½. For initially polar distributed particles, we see signs of a bimodal cumulative
fragment distribution. Adding statistical variation in material parameters of the fracture model causes the velocity numerical solutions to become
less sensitive to changes in resolution for Cartesian distributed particles.
Copyright © 2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Most conventional weapons contain some type of explosive
charge encased in a steel metallic container. When the
explosive filling of a shell or a bomb detonates, the casing is
subjected to an extreme high pressure from the gaseous
products of the detonation. The casing ruptures and a number
of fragments that vary greatly in size are produced. During
natural fragmentation the spatial shape and velocity distribu-
tions are probabilistic because of the strength of the casing and
the nature of the shock wave that gives the detonation.
Rigorous hydrocode calculations can offer insight into the
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physics of fragmentation. However, no first principle calcu-
lations can currently be used for calculating the correct frag-
ment size distribution. This deficiency may be due to the lack
of viable fracture models during high rates of strain or
microstructure variations that are not accounted for. However,
hydrocode accuracy may also play a role due to the stochastic
or chaotic nature of the fragmentation process.

The fracture behavior of steel rings, taken from a 25 mm
steel warhead is studied. To reach high strain rates around 104/
s, an expanding ring test was performed. A streak camera was
used to examine the radial ring velocity, and a water tank was
used to collect the fragments (Moxnes et al., 2014 [31],
Moxnes et al., 2015 [32]). The fracture strain in the standard
JohnsoneCook (hereafter abbreviated J-C) fracture model
(1985) [25] is deterministic. Current research in the literature
on fracture/failure models focus on the dependency of frac-
ture/failure strain on triaxiality (the ratio of the invariant I1 to
J2) or even the third invariant, strain rate influence on ductility,
Elsevier B.V. All rights reserved.
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element size and the connection to adiabatic shear bands
during high rates of strain. Goto et al. (2008) [17] and Grady
and Hightower (1990) [13] investigated the fragmentation size
of explosively driven rings and cylinders. The data were used
to determine relevant coefficients for the J-C fracture model. A
quasi-static strength model of the steel was established by
using a smooth uniaxial tensile test to find the von Mises flow
plastic function in a J-C (1983 [24], 1985 [25]) strength
model. The parameters of the J-C fracture model were found
using the results from quasi-static tensile tests on three
different sample geometries (Moxnes et al., 2014 [31]).
However, variations in the micromorphology of the material
may lead to variations in fracture strain that may be important
in fragmentation studies.

The first intriguing stochastic approach to the fragmenta-
tion problem was to investigate the statistical most random
way of portioning a given topology into a number of discrete
entities. Mott and Linfoot (1943) [34] referred to an earlier
work of Lineau (1936) [29] for the description of fragmenta-
tion of ammunition based on this purely stochastic principle.
The best known formula for the prediction of the size distri-
bution is the Mott cumulative fragment mass formulae (Mott
and Linfoot 1943 [34]; see Appendix A for details), which is
further developed by Grady and Kipp (1985) [15] by investi-
gating more carefully the statistically most random way of
portioning a given area into a number of discrete entities. The
derivative of the Mott formulae is a two-parameter Weibull
distribution which is infinite at zero mass. The literature gives
possible modifications to account for maximum and minimum
fragment size. See Cohen (1980) [5], Grady and Kipp (1985)
[15], Strømsøe et al. (1987) [39], Grady (1990) [14] and Baker
et al. (1992) [1] for further studies in geometric fragmentation
statistics. Grady (1990) [14] developed a theory for the sta-
tistical fragmentation based on the Poisson process for masses
or for areas. The Weibull distribution has been used for frac-
ture statistics for brittle materials (Lu et al., 2002) [27]. A
method for analyzing the mass distribution was developed
where the cumulative fragment mass is plotted as a function of
cumulative fragment number, i.e. beginning with the heaviest
fragment (Held and Kühl 1976 [20], Held 1990 [21], Held
1991 [22]).

Metals have a microstructure whose details may create
variations in material strength and strain to fracture. Rather
than explicitely model the microstructure one attempts to
calculate some effects of material inhomogeneity by a phys-
ical based statistical description. In a later work, Mott (1947)
[33] assumed that fractures occurred at random around the
circumference of the ring of a casing at a frequency governed
by a strain dependent hazard function. Mott used tensile test
data on steels to investigate parameters of the hazard function
and provided some analytical solutions. It should be empha-
sized that this second model by Mott bears no relationship to
the earlier Mott distribution derived by Mott and Linfoot
(1943) [34]. Moreover, computer codes can provide details on
fragmentation behavior, and more easily use the stochastic
fracture approach as developed by Mott (1947) [33]. However,
the spatial scale of the microstructure is typically of the order
of micrometers and is currently not readily accessible to
computational tools and resources for system level calcula-
tions. To account for microstructure physics or even adiabatic
shear banding at the sub-grid level, a statistical approach may
indeed be useful. A current research area is whether statistical
fracture in constitutive models predicts the size distribution of
fragments better than a homogeneous fracture model (Hal-
dorsen and Moxnes 1998a [18] and 1998b [19], Glansville
et al., 2010 [11], Hopson et al., 2011 [23], Meyer and Brannon
2012 [30], Rakvåg et al., 2014 [38], Moxnes et al., 2015 [32]).
Hopson et al. (2011) [23] concluded by using a Eulerian code
that a statistically compensated J-C fracture model substan-
tially improved the fragmentation mass distribution for an
explosive loaded cylinder. The homogeneous solution pro-
duced larger fragments in comparison to the Weibull solutions
and the test data. Meyer and Brannon (2012) [30] concluded
that using a Eulerian code with inherent variability in the
continuum mechanics simulations lead to more realistic pre-
dictions. The statistical J-C fracture model achieved better
predictions of the intermediate-sized fragments. It was
concluded that proper ways to incorporate sub scale physical
effects in strength and fracture models remains a subject of
research. Moxnes et al. (2014) [32] show by using smoothed
particle hydrodynamics (SPH) that randomness increased the
number of fragments.

Another research issue is whether numerical noise is useful
without any stochastic fracture model (Diep et al., 2000 [7],
Diep et al., 2004 [8], Prytz and Ødegårdstuen 2011 [36], Cullis
et al., 2014 [6], Moxnes et al., 2014 [31], 2015 [32]). The
interesting aspect of numerical noise is that it does not require
any artificial seeding of fracture sites within the material as a
part of the initial conditions of the problem. However, mesh
sensitivity makes results of fracture models difficult to validate
(Brannon et al., 2007 [3]). Glansville et al. (2010) [11] found
that mesh sensitivity was significantly reduced in the explicit
Autodyn Lagrangian code when applying volume scaling in a
Weibull distribution. Meyer and Brannon (2012) [30]
concluded that further studies were warranted to ensure
mesh independence of the predictions and accuracy in a va-
riety of applications. Moxnes et al. (2014) [31] show by using
SPH that increasing the resolution (i.e. reducing the particle
size) increased the number of fragments.

Particle methods such as smoothed particle hydrodynamics
(SPH) show tremendous potential for fragmentation simula-
tions since they support both arbitrary large deformations and
Lagrangian state variable tracking that avoids corruption by
advection errors. SPH is a Lagrangian technique (Gingold and
Monaghan 1977 [10], Lucy 1977 [28], Benz 1990 [2]) based
on two main assumptions: First, an arbitrary scalar field var-
iable can be estimated at any point in space by multiplying the
variable by a suitable weight kernel and integrating over the
entire simulation domain. The scale length of the weight
kernel is referred to as the smoothing length, and in practice,
the kernel has compact support so that the integral can be
restricted to a relatively small volume. Secondly, the contin-
uous integral is replaced by a discrete sum over a finite set of
interpolation points (the particles). The gradient of the variable
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in question can be found by differentiating the interpolated
estimate. The most well-known problems with SPH, in
particular when simulating solid dynamics, is loss of stability
due to tensile instability (Gray et al., 2001 [16]) and numerical
fragmentation due to large particle spacing relative to the
smoothing length (Liu et al., 2006 [26], Feldman and Bonet
2007 [9]). In the current work, we use an in house research
simulation code called REGULUS. REGULUS is used with a
state of the art handling of tensile instability (Gray et al., 2001
[16]). In addition REGULUS includes a technique to minimize
numerical fragmentation referred to as regularized smoothed
particle hydrodynamics (RSPH), which was originally devel-
oped to increase accuracy in shock wave modeling (Børve
et al., 2005 [4]). However, in the current work, REGULUS has
been used without regularization and the initial particle
spacing is chosen so as to minimize the problem of numerical
fragmentation. In future, the plan is to adapt the regularization
technique to solid dynamics in order to reduce the problem of
numerical fragmentation even further. In the current work, we
let the fracture strain of SPH particles vary randomly ac-
cording to a Weibull distribution, and examine the fragmen-
tation behavior change as a function of the variance. To
examine resolution dependency, the smoothing length (and
particle size) is varied. The initial particle distribution is either
Cartesian or polar structured. The discretization errors depend
on the ratio of smoothing length to particle spacing and how
the particle distribution is structured. In particular, the level of
numerical noise will depend on how well the structuring of the
particles matches the geometry of the problem being solved. In
the current work, the initial particle distribution is either
Cartesian or polar structured so that we can investigate to what
extent the initial particle structuring affects the fragmentation
behavior. The experimental part of the study is mostly reported
in Moxnes et al. (2015) [32].

2. The experimental set up and geometrical data

Fig. 1 shows the set up. A brass tube with constant outside
diameter and variable inside diameter is used to control the
radial expansion velocity of the steel rings. The steel rings
were manufactured from projectile bodies of in-service
rounds. The test item is placed such that the expansion of
the ring is perpendicular to the axis of a rotating mirror camera
that is used to find the expansion velocity. The fragmentation
studies were a duplication of the streak camera studies.
However, in this case the fragments were collected in a water
tank. To be able to repeat the actual velocity-time conditions,
the tubes and rings were allowed to expand first in a thin
plastic bag filled with air that was submerged underwater.
Fig. 1. The material locations and the geometrical set up for the expanding ring

test.
Thus the expansions and break up occurred in air. The water
barrel was then emptied and sieved, and the fragments
collected with a magnet. More than 95% of the total mass was
collected.

The explosive is ignited at time zero at one end of the
cylinder. The density of the explosive is 1.87 g/cm3. The total
length of the cylinder with explosive is 10.2 cm. The length of
the steel ring is 1 cm and the thickness is 0.33 cm. Two
different shots (loadings) were studied numerically and
experimentally by varying the thickness of the brass cylinder
to achieve different expansions velocities of the steel rings.
The steady state numerical velocities were found to be 190 m/s
and 630 m/s and in good agreement with the measurements
(Moxnes et al., 2015 [32]). The parameters of the two different
loadings are seen in Table 1.

Uniaxial tensile test specimens and two notched tensile
specimens were extracted from a heat-treated steel material to
establish a J-C strength and fracture model. The steel alloy
composition is provided in Table 2. The steel is first casted,
then rolled and heat-treated by quenching. Finally it is
tempered. The hardness is 530 Vickers which corresponds to
5.2 GPa, or to 5.6 GPa when defined as force per projected
contact area of the indenter. The tests were carried out at room
temperature in a hydraulic test machine with a strain rate of
approximately 5 � 10�4 s�1 (quasi-static condition). The
numerical simulations of the mechanical tests were performed,
assuming isotropic material properties. The results were
compared with the experimental results.

The J-C (1983 [24], 1985 [25]) strength model is
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In the original model, Y(εp) ¼ A þ B εp
n (Johnson and

Cook 1983 [24]), where εp is the plastic strain. In the current
work, Y(εp) was set as a piecewise linear function of εp, as
shown in Fig. 2.

_εp is the plastic strain rate and _ε*p is the nominal plastic
strain rate of 1/s”. mt parameterizes the strength dependency of
the temperature. Troom is the reference temperature set to
300 K and Tmelt is the melting temperature set to 1800 K. For
the quasi-static tensile tests we set T ¼ Troom. Other properties
given for this steel is E ¼ 210 GPa as the elastic modulus,
n ¼ 0.33 as the Poisson ratio and r ¼ 7850 kg/m3 as the
density. Strain rate parameter c and mt in equation (1) are set to
zero for the quasi-static tests and as the baseline values in this
article.

The J-C (1985 [25]) fracture model is, when not accounting
for temperature dependency or strain rate dependency in the
fracture strain, given as
Table 1

Dimensions for brass cylinder and steel ring.

RD/cm OD/cm ID/cm Velocity/(m$s�1)

Loading 1 2.49 1.83 0.52 190

Loading 2 2.49 1.83 1.25 630



Table 2

Steel alloy composition in percent.

Fe C/% Mn/% Cr/%

Balance 0.28 1.25 0.5
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where s* is the triaxiality (negative value of pressure/Mises
stress ratio). εf is the fracture strain and D is the damage
variable. When D � 1 the strength of the material is set to
zero. The experimental results for our steel give D1 ¼ 0.069,
D2 ¼ 10.8, and D3 ¼ 4.8 (Moxnes et al., 2014 [31], 2015 [32]).

We assume that fracture of the ring is dependent of the
subscale microstructure. The fracture strain of the ensemble of
elements/particles making up the ring is assumed to be Wei-
bull distributed. Meyer and Brannon (2012) apply randomness
to D1 þ D2 according to a Weibull distribution. Here we set D1

and D3 as fixed, while D2 is set stochastic to account for
subscale microstructure. We set D2 ¼ D2=D20, where
D20 ¼ 10.8 is the average value of D2 equal to the experi-
mentally found value. The distribution rðD2Þ is a Weibull
distribution, to read
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It is readily found that the expectation EðD2Þ and variance
VarðD2Þ are
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where G() is the Gamma function. To ensure that the expec-
tation EðD2Þ equals one, we set the scale parameter
a ¼ EðD2Þ=Gð1þ 1=MÞ ¼ 1=Gð1þ 1=MÞ for varying values
of the Weibull modulus M. When M approaches infinity the
solution is deterministic since the variance becomes zero.
Fig. 2. Piecewise linear yield curve as a function of plastic strain εp.
3. Results

The rings were used in a numerical study. To compare with
earlier result in Moxnes et al. (2015) [32] we keep the initial
values the same and neglect the acceleration phase. To keep
high numerical resolution in the rings we do note simulate the
complete experimental set up. Only the steady state expansion
velocities of the rings were input to most of the simulations.
For the low and high velocity shots, the expansion velocity
was 190 m/s and 630 m/s, respectively. The smoothing length
determines the accuracy of the kernel estimation assuming a
continuous description. The particle spacing relative to the
smoothing length determines the level of error in going from a
continuous to a discrete representation. Typically, the ratio of
smoothing length to particle spacing is initially chosen to be in
the range 1.0e1.5. We use an initial particle spacing of
0.01 cm as baseline and the smoothing length h in all simu-
lations is chosen to be 1.5 times the initial particle spacing. All
simulations are performed in 3D with a symmetry plan normal
to the axial axis and through the middle of the ring. The nu-
merical results obtained with the REGULUS code are
compared with the experimental data. Figs. 3 and 4 show the
ring after 30 ms when using initially Cartesian distributed
particles. Figs. 5 and 6 show the corresponding results for
initially polar distributed particles. The color coding indicates
the mass of individual fragments through a function found as
the logarithm of fragment mass normalized by a reference
mass of 1 mg.

The number of fragments is much lower for the low ve-
locity shot than for the high velocity shot. The reduced number
of fragments can be explained. The fragmentation process
starts with the initiation of shear or tensile fractures at some
random points. After fractures are initiated, loads decrease so
stresses are not sufficient to trigger multiple fracture surfaces.
However, when the same ring is deformed at high rate of
strain, fragmentation number increases since a fracture that
develops at one location can only influence the stress and
strain at a neighboring location after a finite delay time. This
delayed interaction between initiation sites provides time for
crack growth at neighboring sites.

In Figs. 3e6, the statistical variation in fracture strain in-
creases in the panels from left to right. All simulations include
a certain level of numerical noise which depends on resolution
and initial structuring of the particles. Cartesian distributed
particles results in more irregular angular particle position
compared to polar distributed particles. If we compare the left-
most panel of Figs. 3 and 5, we see that the number of frag-
ments in the low velocity case is about 4 times larger when
using Cartesian instead of polar distributed particles. When the
statistical variation in fracture strain is increased, the results
using the polar distributed particles start to resemble the cor-
responding Cartesian results. ForM ¼ 1, simulations with both
types of particle distributions agree on a total fragment count
of about 12e15. In the high velocity case, the difference be-
tween the Cartesian and polar results is less pronounced even
when M equals infinity. This can, at least partly, be due to
increased numerical fragmentation.



Fig. 3. The fragmentation pattern at 30 ms with the ring expansion velocity of 190 m/s using Cartesian distributed particles with h ¼ 0.015 cm. The color indicates

the logarithmic fragment mass normalized by a reference mass of 1 mg.

Fig. 4. The fragmentation pattern at 30 ms with the ring expansion velocity of 630 m/s using Cartesian distributed particles with h ¼ 0.015 cm. The color indicates

the logarithmic fragment mass normalized by a reference mass of 1 mg.

Fig. 5. The fragmentation pattern at 30 ms with the ring expansion velocity of 190 m/s using polar distributed particles with h ¼ 0.015 cm. The color indicates the

logarithmic fragment mass normalized by a reference mass of 1 mg.

Fig. 6. The fragmentation pattern at 30 ms with the ring expansion velocity of 630 m/s using polar distributed particles with h ¼ 0.015 cm. The color indicates the

logarithmic fragment mass normalized by a reference mass of 1 mg.
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The cumulative number of fragments as a function of the
fragment mass is shown by the solid lines in Figs. 7 and 8 for
the high velocity shot for the Cartesian and polar distributed
particles, respectively. The Weibull modulus M influences the
fragmentation characteristics in this case for both Cartesian
and polar distributed particles, and the variability with the
smoothing length h is significant. The smoothing length
h ¼ 0.08 cm (yellow curves) is clearly too large. The results
for N(m) are reasonably well converged when h is smaller than
0.04 cm (orange curves). A plateau in N(m) is seen for masses
less than around 300 mg. In addition to a distinct plateau, most
of the numerical solutions for M ¼ 1 and M ¼ 4 exhibit an
noticeable increase in N(m) for m < 50 mg. Mott and Linfoot
(1943) [34] use a shape parameter of n ¼ 0.5, which gives no
plateau. However, the Mott (1947) [33] solution shows a
Fig. 7. The accumulated number of fragments for v ¼ 630 m/s as a function of

the fragment mass in milligrams forM ¼ Infinity,M ¼ 4,M ¼ 1 and Cartesian

coordinates.
plateau (see also Fig. 5 in Grady and Olsen 2003 [12]). We
calculated the least square regression fit to the different nu-
merical SPH solutions using a generalized Mott distribution
(Appendix A). To achieve a plateau, the shape parameter n of
the fragment distribution must be larger or equal to one. Using
a single, generalized Mott distribution (see Appendix A), we
usually achieve a value of n of around 4. But in some cases, in
particular for some of the polar solutions plotted in Fig. 8, the
sharp low-mass increase in fragment count forced the esti-
mated n to be around 1 or less. In these cases, however, the
overall fit to the numerically obtained distributions was typi-
cally poor.

We fit the numerical data to the bimodal distribution,
N(m) ¼ N1 (m) þ N2 (m) where N1 (m) and N2 (m) are two
Fig. 8. The accumulated number of fragments for v ¼ 630 m/s as a function of

the fragment mass in milligrams for M ¼ Infinity, M ¼ 4, M ¼ 1 and polar

coordinates.



Fig. 10. The shape parameter n and the scale parameter m as a function of

smoothing length h for polar distributed particles and v ¼ 630 m/s.

325J.F. MOXNES, S. BøRVE / Defence Technology 11 (2015) 319e329
generalized Mott distributions (Vogler et al., 2003 [40]). To
simplify the calculation, we assume that fragments with
masses greater than 50 mg belong to distribution 1, while the
remaining fragments belong to distribution 2. In most simu-
lations, a clear majority of fragments have masses greater than
50 mg and thus N1 (m) » N2 (m). Even so, the introduction of a
second Mott distribution makes it possible to find a better fit to
the distribution of fragments with masses larger than 50 mg.
The dotted lines in Figs. 7 and 8 show the least square
regression fit to the different numerical SPH solutions using
the bimodal Mott distribution. In the Cartesian case, the low-
mass Mott distribution is visible for M ¼ 1. There are also
signs of an extra low-mass plateau in the case of M ¼ 4 and
M ¼ Infinity. In the polar case in Fig. 8, the low-mass Mott
distribution is narrow but more visible than in the Cartesian
case.

For each bimodal distribution, N(m) we achieve a set of 4
Mott parameters, (n1,n2,m1,m2), which defines the fitted dis-
tribution. Based on these parameters, we define the mass-
averaged bimodal Mott parameters for the bimodal distribu-
tion as n ¼ (M1n1 þ M2n2)/M

TOT and m ¼ (M1m1 þ M2m2)/
MTOT, where M1 is the total mass of fragments with masses
larger than 50 mg and M2 is the total mass of the remaining
fragments. MTOT ¼ M1 þ M2. Fig. 9 shows the mass-averaged
bimodal Mott parameters n and m for the high velocity shot as
function of h in the Cartesian case. The black, green, and red
curves correspond to the M ¼ Infinity, M ¼ 4, and M ¼ 1
distributions, respectively. We see that n is stable around 4 for
all solutions, while m increases from around 0.5 g to around
0.8 g when h is sufficiently large. There is little or no evidence
of n and m being dependent on Weibull modulus M. Fig. 10
reveals somewhat larger fluctuations in n and m in the polar
case for larger h, which seems to be a resolution dependent
variation. We observe a small difference in m between the
M ¼ Infinity solution and the other two solution when h is
small. The difference between the deterministic and the sta-
tistical solutions in m only when using polar distributed par-
ticles indicates that the numerical noise is lower when using
polar than when using Cartesian distributed particles.

To check the applicability of volume scaling on mesh de-
pendency of cumulative mass, we apply the volume scaling
Fig. 9. The shape parameter n and the scale parameter m as a function of

smoothing length h for Cartesian distributed particles and v ¼ 630 m/s.
according to the relation of Meyer and Brannon (2012) [30] on
an M ¼ 1 simulation with polar distributed particles. The
required reference volume was set to 10�5 cm3. Fig. 11 shows
that the scaling is not viable. The accumulated number of
fragments is depended on the particle size.

The low velocity shot of 190 m/s shows a small number of
fragments and a good statistical examination is difficult.
Fig. 12 shows the cumulative number of fragments for
h ¼ 0.015 cm for Cartesian and polar distributed particles,
respectively. The top panel shows the deterministic case with
M ¼ Infinity. The Cartesian case gives a total fragment count
of 20 whenM ¼ Infinity. The polar case shows a small number
of fragments of the same mass, which is not identifiable for
larger h values. Applying statistically varying material prop-
erties polar distributed particles show identifiable fragments.
As the Weibull modulus decreases, the total number of frag-
ments in the Cartesian case decreases. As can be seen in the
bottom panel of Fig. 12, the Cartesian and polar solutions
largely agree when M ¼ 1 with a total number of fragments of
about 10e15. This is in good agreement with experimental
data. The agreement between Cartesian and polar distributed
particles only for M~1 is consistent with the assumption that
the numerical noise is considerable larger in the Cartesian
solutions than in the polar solutions.

Figs. 13 and 14 show a summary of the simulated and
experimental fragment count. For v ¼ 190 m/s and the larger
Fig. 11. The accumulated number of fragments for v ¼ 630 m/s as a function

of the fragment mass in milligrams for M ¼ 1 and polar coordinates. Volume

scaling is used according to Meyer and Brannon (2012).



Fig. 12. The accumulated number of fragments for v ¼ 190 m/s as a function

of the fragment mass in milligrams for h ¼ 0.015 cm, M ¼ Infinity, M ¼ 4 and

M ¼ 1.

Fig. 13. The total number of fragments for v ¼ 190 m/s.

Fig. 14. The total number of fragments for v ¼ 630 m/s.
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particle size (h ¼ 0.04 cm), the fragment count shows only a
weak dependence on the Weibull modulus M for the Cartesian
distributed particles. However, for the polar distributed parti-
cles the number of fragments increases with decreasing M. For
the smaller particle size (h ¼ 0.015 cm) the number of frag-
ments is much the same, but decreases somewhat with
decreasing M for the Cartesian distributed particles. For the
polar distributed particles the fragments count once again in-
creases with decreasing M. For v ¼ 630 m/s, the larger particle
size gives only about half the expected fragment count for the
Cartesian distributed particles. Decreasing the Weibull
modulus reduces the fragment count somewhat. Using polar
distributed particles with h ¼ 0.04 cm, a larger number of
small fragments is achieved. The number of fragments in-
creases with decreasing M. Using the smaller sized particles
gives overall good agreement with experimental data both for
the initially Cartesian and polar structured particles. The total
number of fragments increases while the number of fragments
larger than 100 mg decreases as Weibull modulus M decreases
in the polar case. In conclusion, the Cartesian solutions fit
better to the experimental data when the Weibull modulus M is
assumed to be infinite, while the polar solutions fit better when
M is assumed to be 4 or less. According to the simulation of
the complete expanding ring experiment including the brass
and the explosive by using the Impetus Afea and the Autodyn
code, the duration of the main acceleration phase is in the
order of microseconds (Moxnes et al., 2015) [32]. However,
few reverberations are needed to get to the final velocity. It is
observed in Fig. 14 that the acceleration phase of one or two
micro seconds marginally influences the fragmentation pattern
for the high velocity. For the low velocity the results are the
same. A closer examination shows that no fragments are
developed during this phase. Future research may simulate the
complete set up with high resolution in the steel rings. This
may increase agreement with experimental results.
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To further investigate to what extent fragmentation depends
on resolution, we compare the cumulative fragment distribu-
tions for the high velocity case. First, the bimodal regression
fit to the cumulative fragment solutions with h ¼ 0.015 cm is
taken as the reference. Next, we calculate the average differ-
ence, dNerr, between a given REGULUS distribution N(m) as
plotted in Figs. 7 and 8, and the corresponding reference
distribution. We do this by summing the squared difference
between the two distributions for each discrete fragment mass
value, and dividing the sum by the number of summands. The
results are plotted in Fig. 15 as functions of h. The Cartesian
case dNer increases strongly when h is larger than around
0.04 cm, which can be considered as a threshold. For
h < 0.04 cm, the difference between the numerical solutions
and the reference solution drops more slowly as h is reduced.
For the polar case a corresponding threshold value seems to be
around 0.03 cm. With polar distributed particles, dNer appears
to grow more quickly with h than with Cartesian distributed
particles. The curves for the different values of Weibull
modulus M show roughly the same increase in dNerr with h.

4. Conclusions and discussion

The fracture behavior of the radially expanding steel rings
made of a casing of 25 mm warhead was studied experimen-
tally and numerically by using the SPH method. The param-
eters of a J-C strength and J-C fracture model were established
using the results from tensile tests of the smoothed bar and two
notched bars. The simulated expansion velocity of the velocity
of rings matches a streak camera measurement.
Fig. 15. Average difference between a cumulative fragment distribution and

the corresponding reference distribution as function of h.
A minimum resolution was required to achieve the simu-
lated number of fragments consistent with the experimental
results. Increasing expansion velocity of the rings increases the
number of fragments. Added randomness of the material pa-
rameters influences the fragment characteristics, especially for
low expansion velocity shots. Increasing particle size in SPH
decreased the number of medium and large fragment size.

Mass distribution dependency on the SPH particle size is
larger when using polar distributed particles than when using
Cartesian distributed particles. Least square regression fits to
the cumulative number of fragments by applying a generalized
Mott distribution show a shape parameter around 4. For the
polar distributed particles we find signs of a bimodal cumu-
lative fragment distribution.

Meyer and Brannon (2012) [30] used a Weibull distribution
to generate statistical fracture that predicts the size distribution
of fragments better than a homogeneous fracture model. We
performed no quasi-static tensile experiments to establish a
statistical distribution and the true Weibull modulus is uncer-
tain for the used steel material. To explain the difference be-
tween the results obtained with Cartesian distributed particles
and polar distributed particles, it can be suggested that a
Cartesian representation gives more numerical noise than the
corresponding polar representation. This numerical noise
stimulates randomness and fragmentation. We identify a
minimum resolution required for simulating fragmentation
characteristics with acceptable accuracy. This critical resolu-
tion corresponds to a particle size small enough to resolving
the fragments. We hypothesize that decreasing particle sizes in
RSPH, that increase computer time, can to some extent be
avoided by adding randomness in material parameters of the
fracture model. This may be more like a general principle to
be examined in future research for Cartesian and polar
distributed particles. However, use of numerical noise is not a
controlled method that may mislead is some cases.

The need for a stochastic material model to mimic subscale
physics may not be strong for our steel material. Numerical
noise in the Cartesian case appeared to be useful. This is in
agreement with earlier research from Diep et al. (2000 [7],
2004 [8]), Prytz and Ødegårdstuen (2011) [36], Cullis et al.
(2014) [6]), and Moxnes et al. (2014 [31], 2015 [32]). A nu-
merical computed chaotic trajectory diverges exponentially
from then true trajectory in phase space with the same initial
condition. There exists an errorless trajectory (no computa-
tional error) with slightly different initial condition that stays
near (shadows) the numerical computed one. Thus a compu-
tational solution (with error), with no variation in the initial
conditions may mimic the true solution with variations in the
initial conditions or the material parameter (Ott 1993 [35]). In
future research it will be useful to compare the mass distri-
bution with the best numerical results and analytical models.
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Appendix A. The generalized Mott distribution

The generalized Mott distribution for the cumulative
number of fragments as a function of the mass of fragments is

NðmÞ ¼ Nð0ÞExpð � ðm=mÞnÞ;Nð0Þ ¼ NTOT ðA1Þ

where NTOT is the total number of fragments. This gives the
particle density rn(m) as the two parameter Weibull
distribution

rnðmÞ ¼ � 1

NTOT

vNðmÞ
vm

¼ 1

mn
Expð � ðm=mÞnÞnmn�1 ðA2Þ

The total mass MTOT becomes

MTOT ¼
Z∞
0

NTOTrnðmÞmdm¼ NTOTn

mn

Z∞
0

Expð � ðm=mÞnÞmndm

¼ NTOTmn

Z∞
0

Expð�unÞundu¼ NTOTm

Z∞
0

Expð�vÞv1=ndv

¼ NTOTmGð1þ 1=nÞ ¼ NTOTmGð1=nÞ�n
ðA3Þ

where G is the gamma function. Thus

NðmÞ ¼ NTOTExpð � ðm=mÞnÞ;NTOT ¼ MTOTn

mGð1=nÞ ðA4Þ

Some explicit examples are

n¼ 10NðmÞ ¼MTOT

m
Expð�ðm=mÞÞ

n¼ 1=20NðmÞ ¼MTOT

2m
Exp

�
� ðm=mÞ1=2

�

n¼ 2=30
4MTOT

3
ffiffiffi
p

p
m
Exp

�
� ðm=mÞ2=3

�
ðA5Þ

The average fragment mass is defined by
mdef ¼ MTOT=NTOT. This gives the relation between average
mass and scale factor and some example as

NTOT ¼ nMTOT

mGð1=nÞ0m¼ nMTOT

NTOTGð1=nÞ ¼ m
n

Gð1=nÞ

n¼ 10NTOT ¼MTOT

m
0m¼MTOT

NTOT ¼ m

n¼ 1=20NTOT ¼MTOT

2m
0m¼ MTOT

2NTOT
¼ m

2

n¼ 2=30m¼ 4MTOT

NTOT3
ffiffiffi
p

p ¼ m
4

3
ffiffiffi
p

p

ðA6Þ

The masses distribution rm and the cumulative mass Mc(m)
are
rmðmÞ ¼
NTOT

MTOT rnðmÞm¼ NTOT

MTOT

n

mnExpð � ðm=mÞnÞmn

McðmÞ ¼ NTOT n

mn

Z∞
m

Expð � ðm0=mÞnÞm0ndm0

¼ NTOTnm

Z∞
m=m

Expð�unÞundu¼ NTOTm

Z∞
ðm=mÞn

Expð�vÞv1=ndv

¼ NTOTmGIð1þ 1=n; ðm=mÞnÞ ¼ MTOTn

Gð1=nÞGIð1þ 1=n; ðm=mÞnÞ

ðA7Þ
where GI is the upper incomplete gamma function. Say as an
alternative that the cumulative mass is given by

McðmÞ ¼Mcð0ÞExpð � ðm=mÞnÞ;Mcð0Þ ¼MTOT ðA8Þ
This gives the mass density rm and particle density rn as

rmðmÞ ¼
n

mn
Expð � ðm=mÞnÞmn�1;rnðmÞ ¼

rmðmÞMTOT

NTOTm
ðA9Þ

The cumulative number of fragments becomes

NðmÞ¼NTOT

Z∞
m

rnðm0Þdm0 ¼MTOT n

mn

Z∞
m

Expð�ðm0=mÞnÞm0n�2

dm

¼MTOTn

m

Z∞
m=m

Expð�unÞun�2du¼MTOT

m

Z∞
ðm=mÞn

Expð�vÞv�1=ndv

¼MTOT

m
GIð1�1=n;ðm=mÞnÞ¼NTOTGIð1�1=n;ðm=mÞnÞ

Gð1�1=nÞ

NTOT¼MTOT

m
Gð1�1=nÞ

ðA10Þ
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