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Abstract—Convolutional neural networks (CNNs) have re-
cently been applied successfully in large scale image classification
competitions for photographs found on the Internet. As our
brains are able to recognize objects in the images, there must be
some regularities in the data that a neural network can utilize.
These regularities are difficult to find an explicit set of rules for.
However, by using a CNN and the backpropagation algorithm
for learning, the neural network can learn to pick up on the
features in the images that are characteristic for each class.
Also, data regularities that are not visually obvious to us can
be learned. CNNs are particularly useful for classifying data
containing some spatial structure, like photographs and speech.
In this paper, the technique is tested on SAR images of ships in
harbour. The tests indicate that CNNs are promising methods
for discriminating between targets in SAR images. However, the
false alarm rate is quite high when introducing confusers in the
tests. A big challenge in the development of target classification
algorithms, especially in the case of SAR, is the lack of real data.
This paper also describes tests using simulated SAR images of
the same target classes as the real data in order to fill this data
gap. The simulated images are made with the MOCEM software
(developed by DGA), based on CAD models of the targets. The
tests performed here indicate that simulated data can indeed be
helpful in training a convolutional neural network to classify real
SAR images.

I. INTRODUCTION

Target classification in SAR images is still an ongoing
research topic, and many algorithms have been tested on
various data sets. Often the input data to the classifier is a
collection of some form of handcrafted features. In the general
machine learning community, there has recently been renewed
interest in a subclass of pattern recognition methods called
deep learning. One advantage of these methods is that the
algorithm can figure out for itself what the useful information
in the data is, as opposed to earlier methods where the features
to be used had to be manually chosen. The abundance of
labelled data plus the increase in computation power can be
accredited for the renewed interest in this topic. These methods
have shown very good results in classification of objects in
photographs. They have also been applied successfully, both
alone and in combination with other classifiers, to SAR images
from the MSTAR dataset [1], [2], [3]. In this paper, CNNs are

tested on a data set from the PicoSAR radar. The data set
contains a collection of small ships in Oslo harbour, imaged
in X band.

The paper is divided into two main parts. The paper first
describes more specifically the application of CNNs to the data
set and shows that the method can often separate the targets in
the test without the need for any handcrafted features. When
confusers are introduced, however, the false alarm rate is quite
high. Then simulated SAR images made with the MOCEM
software are added to the training data, and it is shown that
classification by CNN can benefit from this. The aim of this
paper is not to build a complete ATR system, or to say that
CNNs are the solution to the ATR problem, but rather to
see if CNNs can successfully separate different target classes
without manually chosen features. Therefore no attention is
being paid to methods for automatic segmentation, azimuth
angle estimation, possible target occlusion etc. The trials done
here indicate that CNNs and also deep learning in general may
be a way forward in order to eliminate the feature extraction
step in the ATR chain, and also that simulated images may fill
the data gap one often faces.

II. DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORKS

Our brains can recognize an abundance of different objects
in photographs, but to come up with an explicit set of
rules to describe the objects that can be implemented in a
computer (in terms of the pixel magnitudes), has shown to
be very hard. Deep learning, in which the algorithm tries to
resemble processes that take place in the human brain, have
recently received renewed interest. This is due to the increase
in available labelled data and the increase in computational
power. Also, [4] showed in 2006 that it is possible to efficiently
train neural networks deeper than just a few layers, something
that was earlier not shown to be successful. It is argued in
[5] that classic classifiers such as support vector machines,
nearest neighbour, neural nets with one or two hidden layers
etc. are in fact often too shallow, and therefore do not possess
enough expressive power to separate the classes unless the
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Fig. 1. Illustration of an example layout of a CNN, proposed by [7] for
handwritten digits recognition

features themselves are already so good that they have more
or less “done the job”. A deep architecture on the other hand,
is said to have the ability to learn highly nonlinear regularities
in the data with hardly any preprocessing. A CNN is one
example of a deep architecture, provided it has enough layers.
CNNs are highly suitable to data containing some spatial
structure, like photographs and speech. CNNs are said to be
reminiscent of simple and complex cells in the primary visual
cortex [6]. They have been quite successful in classifying
handwritten digits [7]. Also, in the yearly held large scale
image classification competition ImageNet more and more of
the competing research groups are using CNNs. In 2014, all
the groups in the top 9 ranking was using some version of
CNNs. CNNs mark an exception to the earlier limitation of
backpropagation training, in that it was possible to train them
using many layers also earlier than the work in [4]. It is argued
that this is caused by the pooling of weights, which in effect
limits the number of parameters in the structure. A limited
number of parameters in turn does not lead to exploding or
vanishing gradients in the backpropagation algorithm, which
has appeared to be the problem for other kinds of deep neural
networks [8], [9]. It also limits the difference often observed
between training and test error, and it keeps the computation
time down. One of the motivations for testing a CNN for
classification in SAR images is to skip the step of feature
selection. Most classification algorithms rely on some kind of
manually selected features for input. This step is often a very
time consuming part of the design of an ATR system. It is also
perhaps the most critical step for the performance of feature
based methods, in that only features that can actually separate
between the classes are useful. It has been shown that if the
features are good, the type of classifier used later on is not
that important [10], [11]. Several dimension reduction methods
(like PCA, ICA etc.) can be applied to eliminate features that
are not contributing to the separation of the classes, however,
a list of potential features have to be made manually to start
from. One other method that does not rely on manual feature
extraction is direct image correlation, but this method has
shown to have its limitations.

Figure 1 shows an example layout of a CNN. This
particular layout was proposed by [7] to be used in
classifying handwritten digits from the MNIST data set. The
net used in the experiments in this paper differs a bit from the

Fig. 2. The different ships used in this study

one in the illustration. The list below shows the parameters
used for each layer in the net:

1) Input layer: 304 x 84
2) Convolutional layer: 6 x 5 x 5
3) Subsampling layer: 6 x 2 x 2
4) Convolutional layer: 16 x 5 x 5
5) Subsampling layer: 16 x 2 x 2
6) Convolutional layer: 120 x 18 x 74
7) Fully connected: 84 x 1
8) Output layer: 2/6

The error function to be minimized during training is the
Mean Squared Error (MSE). Further, the backpropagation
method used here is the stochastic gradient descent using
Levenberg-Marquardt with no calculation of the Hessian. The
choice of number of layers, number of nodes, backpropagtion
method and other parameters may seem a bit arbitrary. There
are, however, some heuristics on the subject. [12] has made
an overview of best practices. Many other parameter settings
could have been tried in this study, but limited time prevents
the trial of all possible parameter combinations.

III. DATA SET

A. Radar data

The data set used in this experiment comes from the radar
PicoSAR and was collected by FFI over Oslo harbour in
several campaigns between 2009 and 2012. The radar was
purchased by FFI from Selex in 2007. It operates in X band
and was installed on board a helicopter during the collections.
The actual targets used in this paper were not the primary focus
of the collections, and the data set is therefore not complete,
i.e. it does not cover all intervals in azimuth and elevation
angle as one would wish for ATR development. Figure 2
shows the different ships in this study. The data set consists of
more than 850 SAR images of these ships, plus some random
patches in the images to be used as confusers. Figure 3 shows
the azimuth and elevation angles of the available SAR images.

B. Preprocessing

The ships are found in a complex harbour environment, and
automatic segementation of the targets is difficult. We have
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Fig. 3. Available manually segmented SAR images used in this study. Legend
denotes number of images. Azimuth angle is defined as 0 from port, 90 from
aft etc.

therefore manually segmented out the ships from the images.
There are a few uncertainties in this data set:

• Multipath and overlay in the images may be caused by
the other structures at the pier. Therefore too much or too
little is sometimes included in the manual cut.

• As the ships are not perfectly stationary at the pier, some
defocus may occur. The segmented images are therefore
autofocused using PGA before they are used in the net.
The autofocusing does not always work, but it ensures
that major unwanted regularities in the different classes
are removed.

• Also there is some uncertainty as to the exact orientation
of the targets. The ships are assumed to be perfectly
aligned with the pier when the azimuth angle is calcu-
lated, but we know that the ships are often a bit skewed.
The images are rotated to have the bow upwards before
classification.

Figure 4 shows examples of some of the SAR images in the
study. The azimuth angle is noted on top.

IV. CLASSIFICATION RESULTS

A. Preparations

To prevent the net from utilizing regularities in the images
that are not really a part of the data, such as differences
between classes in the manual segmentation, masks are placed
over the images. This approach will also make sure that the
net cannot utilize it if one of the ships is more skewed at
the pier than the rest, and therefore has some parts of the
image not occupied by any data. In that case, data in the same
pixels in the other images will also be removed. Common
masks are made for all classes having the same length. The
reason why one mask is not used for all the classes, is that
we think that the length of the ship is a feature that will

Fig. 4. Examples of SAR images used in this study. Azimuth angle in degrees
noted on top. Top row: Oslofjord. Bottom row: Hvite Ørn.

Fig. 5. Example of how the masks for the different classes are created. The
colour coding in the first two pictures are the number of images that cover
the region. The last picture shows the resulting mask when the coverage of
the mean of the number of images for the two ships of the same length are
used.

be used in any classification scheme, and so it is no use in
removing this information. Also, by using a mask that will
fit only the smallest ship on all the images, a lot of useful
information about the larger ships will be removed. One could
argue that other methods for creating the mask would be better,
and perhaps be more realistic for an operational system. The
generation of such a mask is illustrated in figure 5. Occlusion
is not taken into account in these tests. Images where less than
about 75 % of the ship is visible, are discarded. The pixel
values are the log intensity values, and no processing have
been done to them except normalising each image to have
mean 0 and standard deviation 1, which is standard procedure
in neural networks.
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Trial # Ships Azimuth Decim # runs Min MCR
1 OF/HO 0 - 360 1 22 0.05
2 HU/AK 0 - 360 1 101 0.0
3 OF/HO 40 - 80 1 17 0.0
4 OF/HO 40 - 80 2 16 0.03
5 OF/HO 40 - 80 3 20 0.06
6 OF/HO 40 - 80 4 19 1.0
7 OF/HO 100 - 170 1 16 0.27
8 All 0 - 360 1 9 0.02

TABLE I
VARIOUS CLASSIFICATION RESULTS FOR CNN. THE DECISIONS ARE

FORCED. MCR = MISCLASSIFICATION RATE. OF = OSLOFJORD. HO =
HVITE ØRN. AK = AKERØ. HU = HULDRA.

Fig. 6. Behaviour of many training runs using the same parameter set

B. Results

As the error function to be minimized in the backprojection
weight learning algorithm can be multi modal, the training
process often gets stuck in local minima. There are several
tricks reported in the literature to lower the chances of this
happening [12], many of which have not been tested in this
study. The training will still have to be run several times
in order to observe its behaviour. The initial weights, the
actual test and training samples, plus the order in which the
training samples are presented to the net are randomized for
each training run. The results from many trials with different
parameters can be found in table I. First, only ships with the
same length are trained by the net. The pairs Oslofjord/Hvite
Ørn and Akerø/Huldra are thus tested independently. This was
done because when the ships have different lengths, it seems
likely that the net will utilize the extra data in the longer ships
to separate them from the ships of other lengths.

The difficult trials will therefore be between the ones of
the same size, and they are also using the same mask, which
forces the net to only utilize the actual values in the same pixel
positions. The results of these trials are promising, showing
a misclassification rate (MCR) of 0 for Huldra/Akerø when
using all the data (test no 2). This may be because the two

classes have a limited amount of overlapping azimuth angles,
and are different enough not to be confused with each other.
Figure 6 shows an example of how MCR can develop for
different training runs using the same parameter set. We can
see that some of the runs seem to get stuck in local minima,
one is stuck for a while, but then manages to get out, and some
converge to a good value. None of the runs made it to 0 MCR
in this example, though. The MCR is only measured on the test
set. Oslofjord/Hvite Ørn does not reach an MCR of 0 when all
of the data is used. This may have been solved if we had more
data, that could capture all the variation in the class. Instead we
try using a finer sectioning in azimuth angle. One would expect
that samples from a smaller azimuth angle interval are more
similar to each other than samples collected in a wider interval.
It is of course a lower limit to the size of these intervals,
when the amount of data in them is too small for the net to
converge to a good solution. The results when limiting the
azimuth angle intervals to 40 - 80 degrees also correspond to
these theories (trials no 3 - 6). In these trials, an increasing
number in the column called “Decim” (= decimation) means
that more and more data is removed from the training set. See
table II for an overview of the number of samples used in
the various trials. In the other trials, decimation = 1 means
that the data set is divided evenly (but randomly) into test
and training set. We see that as the azimuth angle interval
is limited, the MCR reaches 0, but as we remove more and
more data, the performance decreases. In trial no 7, we only
have 13 training samples for Oslofjord, and the performance
is bad here also. In those cases when we don’t have enough
data, simulations may be the solution. [13] suggests generating
some distorted versions of the real data in order to increase
the training set for handwritten digits recognition. Whether or
not that method could work on SAR data is not tested here.
Finally the net was trained on data from all the ships, trial
no 8 in table I. The confusion matrix corresponding to forced
decicion is shown in table III. We see that all the confusion is
between Oslofjord and Hvite Ørn. If different masks had not
been applied according to length, there may have been more
confusion between the other classes also. In an operational
system where we have uncertainty about the length of the
ship, this result is probably too optimistic.

C. Unknown targets

So far in this paper we have only tried to show that CNNs
are capable of finding useful features for separating ships
in SAR images, without the need for handcrafted features.
However, in an operational system, a classifier has to respond
correctly to unknown targets, i.e. targets the net has not been
trained to recognize. The desired response for a robust system
would be to declare these confusers as “unknown”. The full
SAR images contain harbour structures, as well as ships and
sea. Random patches were extracted from the same set of
SAR images as the segmented images came from. Also the
ship classes that the net was not trained on were presented
to it as unknown targets. More specifically, a handful of the
best nets resulting from trials no 2, 3 and 8 in table I were
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Fig. 7. ROC curves for the unknown target Smørbukk presented to nets only
trained on Huldra and Akerø

Decim # train OF # test OF # train HO # test HO
2 37 66 32 54
3 24 79 21 65
4 12 91 10 76
5 0 103 0 86

TABLE II
NUMBER OF SAMPLES FOR TEST AND TRAINING SET IN THE TRIALS WITH

AZIMUTH ANGLE INTERVAL 40 - 80 DEG.

presented with unknown samples. The unknown samples were
also masked in the same way as the samples used in the
training of the nets. All combinations of unknown classes and
mask sizes were tested, to see if a pattern would emerge. The
resulting ROC curves show that the false alarm rate is often
very high, meaning that the classifier is not robust. However,
for some combinations of unknown target and mask size, the
false alarm rate is quite good. It seems that generally all
unknown classes have the lowest false alarm rate when a mask
size of 30 m is used, but even when all parameters are fixed,
different nets have very different false alarm rates. Different
nets with the same MCR can also have substantially different
ROC curves, and it is not always the net with the lowest MCR
that has the lowest false alarm rate. No substantial difference in
false alarm rate was observed for the random patches than for
the unknown ship targets. Figures 7 and 8 show ROC curves
for some of the trials, supporting these observations. The rate
of correct classification, however, is always high here on the
samples that are detected, as shown by the low MCR. The
lack of robustness, and the effect of masks on the false alarm
rate, is something that must be studied further.

V. SIMULATED SAR IMAGES

Access to real SAR data is always limited. It is therefore
interesting to see if simulations can be used as training data
together with real data in order to fill the data gaps, especially
if the azimuth angle intervals of the net are decreased.

Fig. 8. ROC curves for the unknown target Akerø presented to nets only
trained on Oslofjord and Hvite Ørn

Class OL OF HO HU AK SB Unknown
OL 85 0 0 0 0 0 0
OF 0 73 8 0 0 0 0
HO 0 2 89 0 0 0 0
HU 0 0 0 60 0 0 0
AK 0 0 0 0 84 0 0
SB 0 0 0 0 0 29 0

TABLE III
CONFUSION MATRIX FOR TRIAL 8 IN TABLE I, CORRESPONDING TO

FORCED DECICION. OL = OLYMPIA, SB = SMØRBUKK.

A. MOCEM software

The MOCEM software is a tool for simulating SAR images
rapidly. It was intended for ATR and training of image
analysts. It is developed by Alyotech under a DGA con-
tract [14], [15]. Instead of trying to make a very accurate
RCS prediction, the code has a phenomenological approach
based on Geometrical Optics and Physical Optics in the last
facet. Based on the geometry of and the materials chosen on
the CAD model, major scattering mechanisms are located in
3D. The scattering is projected onto slant range to produce
an ideal image. Finally a SAR point spread function is
applied in correspondence with the radar parameters chosen
to produce the final SAR image. The different materials on
the CAD model are given separate electromagnetic properties.
The backscattered energy of a given point on the target is
calculated as a sum of specular and diffuse phenomena. The
ratio of these varies depending on the values set for dielectric
constant, roughness and the σ0 curves selected. The CAD
models used in this paper has been built in Rhinoceros, based
on photographs and line drawings found on the Internet. Figure
9 shows the two CAD models used in this study.

B. Simulated SAR images

Some examples of the resulting simulations can be seen in
figure 10. Not much time was spent on tuning the simulations
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Fig. 9. CAD models used in the simulations. Left: Hvite Ørn. Right:
Oslofjord.

Fig. 10. Simulations made in MOCEM, azimuth angles in degrees noted on
top. Left: Hvite Ørn. Right: Oslofjord.

to the real data. We can see that they visually resemble the
real data, but there are also large differences. The classification
trials will show if we have been able to capture some structure
that the net can utilize. When introducing more classes to
the test, it will probably be more important to get a better
correspondence between the simulations and the real data. In
this case, with only two classes to test, it is enough if the
simulations of one class are more similar to the real data from
that class than from the other, and vice versa. However, the
similarity has to be one that is useful to the net.

VI. CLASSIFICATION RESULTS USING SIMULATIONS

The simulations are added only to the training set. The test
set consists purely of real data. We gradually increase the ratio
of simulated to real data in the training set. The number of
simulations is always 26 for each class. The simulated data
are only tested for Hvite Ørn/Oslofjord in the azimuth angle
interval 40 - 80 degrees to see if they can help the drop in
performance seen when the number of samples is too low.
Table IV shows the results for the various trials.

The results are promising, and it seems that the addition
of simulations can indeed compensate for the drop in perfor-
mance when the number of samples is low. It seems that the

Trial # Ships Azimuth % sim Decim # runs Min MCR
9 OF/HO 40 - 80 43 2 22 0.02

10 OF/HO 40 - 80 54 3 24 0.02
11 OF/HO 40 - 80 70 4 19 0.08
12 OF/HO 40 - 80 100 5 17 0.35

TABLE IV
CLASSIFICATION RESULTS USING SIMULATED DATA IN A CNN

simulations have some of the same regularities as the real data
that the net can utilize. If only simulations are in the training
set, however, the performance is bad. It may be that some real
data are needed to guide the selection of features. When more
classes are to be resolved, much more care will probably have
to be taken in the simulation step. Alternatively, one could
plot the activation kernels of the various layers in the CNN
in order to see what features it picks up, as done in [2], and
focus the simulation tuning to these areas.

VII. CONCLUSION

The trials performed in this paper indicate that deeper neural
networks may be a way forward in the ATR field. At least
the trials show that the feature extraction step can be handled
by algorithms. The set of real SAR data used here is very
limited. It does not contain enough classes of the same size.
However, similar statements about the use of CNNs have
been made by others using the MSTAR set. The trials also
indicate that simulated images may be used to fill the data gap
often experienced. However, when confusers are introduced,
the false alarm rate can be quite high. More extensive studies
are thus required, both on the use of CNNs itself, and on the
addition of simulations to the training set.
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