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Abstract 

 

During plastic flow, hydrostatic pressure and plastic strain control the size of the 

yield surface while the Lode angle is responsible for its shape. The von Mises 

yield condition shows no dependency of the Lode angle while the Tresca 

condition shows. It has been concluded that the deviation from the von Mises 

criterion is real and could not be explained on the basis of lack of experimental 

accuracy and isotropy. What is notable is that from an engineering viewpoint the 

accuracy of the von Mises yielding is amply sufficient. However, it has been 

forecast that Lode dependency must be included to describe ductility. It has been 

shown that internal necking down of ligaments between voids that have become 

significantly enlarged in size dominates at high triaxiality, while internal shear 

localization of plastic strain between voids of limited growth dominates at low 

stress triaxiality. The Lode angle has been used to account for these effects. In this 

paper, various mathematical relations are examined that may be useful for further 

studies of the Lode angle and its relation to fracture and ductility. 
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1 Introduction 
 

A plastic theory is constructed from a function of stress which defines the 

combinations of stress for which plastic yield takes place. The next component is 

a flow rule, which defines the ratio of the strain components as a function of the  
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stress state at yield. This can often be put in terms of a normal to the plastic 

potential. In many cases the yield function can be used as the plastic potential 

(associated flow). The classical metal plasticity J2 theory assumes that hydrostatic 

pressure has no or negligible effect on the material strain hardening and that the 

flow stress is independent of the third stress invariant (or the Lode angle 

parameter). In general, the hydrostatic pressure and the plastic strain control the 

size of the yield surface while the Lode (1926) angle is responsible for its shape. 

The von Mises (1913) yield condition shows no dependency of the Lode (1926) 

angle, while the Tresca (1864) condition shows Lode dependency. In 1931 Taylor 

and Quinney published their classical experiment for copper and steel tubes which 

was intended to settle the question related to use of Tresca or Mises criterion for 

plastic flow. They concluded that the deviation from the von Mises criterion was 

real and could not be explained on the basis of lack of experimental accuracy and 

isotropy. However, the data fit the von Mises criterion considerably better than the 

Tresca criterion. Attempts have been made over the years to improve the 

correlation of data by including the effect for the third stress invariant J3 into the 

yield criterion. It has been shown that from an engineering viewpoint the accuracy 

of the von Mises yielding is amply sufficient. 

 

The fracture process of ductile materials is known to be caused by nucleation of 

void, void growth and finally coalescence of voids to fracture. The fracture 

coalescence depends on triaxiality (that means on I1 and J2) (Van Stone et al. 

1985, Garrison Jr. W.M). However, on the macroscopic level it has now been 

questioned whether triaxiality can fully describe many instances of isotropic 

ductility. It has been forecast that Lode dependency must be included to describe 

isotropic ductility. It has been shown that internal necking down of ligaments 

between voids that have enlarged their sizes significantly, dominates at high 

triaxiality, while internal shear localization of plastic strain ligaments between 

voids that have experienced limited growth dominates at low stress triaxiality 

(Parodoen and Brechet 2004). The Lode angle has been used to account for these 

effects.  

 

To quantify the influence of stress triaxiality on ductility, different experiments on 

smoothed and notched bars are traditionally utilized (Hancock and Mackenzie 

1976). In general, the larger the triaxiality, the smaller the fracture strains at 

failure. This is in agreement with theoretical models for void growth (McClintock 

1968, Rice and Tracey 1969). However, McClintock (1971) and Johnson-Cook 

(1985) find that for many materials, the plastic strain to fracture was smaller in 

torsion (no triaxiality) compared to tension (larger triaxiality). Bao and Wierzbicki 

(2004 ab) recently compared different models to examine the influence of 

triaxiality. They concluded that none of the existing models were able to capture 

the behavior in the entire triaxiality range. For large triaxialities (say above 0.4), 

void growth was the dominating failure mode, while at low triaxialities shear of 

voids dominates. The main conclusion was that there is a possible slope discontinuity 
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in the fracture locus corresponding to the point of fracture transition (Bao and 

Wierzbicki 2004b). The influence of the Lode angle parameter on fracture, void 

growth and coalescence has been investigated by recent studies (Zhang et al. 2001, 

Kim et al. 2004, Gao and Kim 2006, Wierzbicki et al. 2005, Barsoum and 

Faleskog 2007, Gruben et al. 2012).  

 

In this article we study various mathematical relations that may be useful for 

further studies of the Lode parameter. 

 

2 The different Lode angle parameters 
 

For isotropic materials, the azimuth angle of a hydrostatic plane can be divided 

into six regions. In each sextant, the azimuth angle can be characterized by the 

Lode angle. The principal stress decomposition given by Bai and Wierzbicki 

(2010) is in the plastic  -plane given by (for definitions of stress invariants see 

Appendix A): 

 

 1 2 3

2 2 2 2 4
, ,

3 3 3 3 3
eq eq eqs Cos s Cos s Cos       

   
       

   
 (2.1) 

 

  is the Lode angle, eq  is the von Mises equivalent stress and , 1,2,3is i   are 

the principal stress deviators. We easily verify that the decomposition is 

mathematically valid, to read 

 

 

         

         
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     

    
          

    

        
            

        

 
       

 

(2.2) 

 

and 

 

   
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    
               

    
                  
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      

 

  (2.3) 
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This further gives the principal stresses as: 

 

 1 1 *

2 2 *
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  

 (2.4) 

 

where 1 2 31/3( )m       and * /m eq    is the triaxiality. We define (see 

Appendix A) and find: 

 

   
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2
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 

 (2.5) 

 

Notable is that 1 1    when  0, / 3  . We now define the first Lode angle 

parameter by 

 

 

    1 1

1

2 2 6
1 1 3 1

/ 6 / 6
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  

 (2.6) 

 

Thus the Lode angle relates linearly to the first Lode angle parameter. Moreover 

we define the second Lode angle parameter (opposite of Lode’s definition) by  
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 (2.7) 
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This second Lode angle parameter can be made more like the first Lode angle 

parameter if we change the phase (thus changing sign (Lode 1926)), to read: 

 

 

 

 

3 2 2

3

3

1 3
( / 3 ) ( )

1 1/ 3

1 ( )

3 ( ) / 3

def Tan

Tan

Tan


      



 


 


      




 



 (2.8) 

 

We notice in Figure 2.1 that 3    is indeed a very good approximation of 

1( )  . 

0.2 0.4 0.6 0.8 1
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-0.5

0.5

1

Lode

 
 

 

Figure 2.1:  Lode angle parameters as a function of the Lode angle 

Red: 1 , Green: 2 , Blue: 3 =- 2 =-  

 

Instead of the parameter set  1 2 3, ,    to characterize the stress space, we can 

use a cylindrical set    , , , ,m eq z     . We can also use the coordinate set 

 , *,eq   . 

This can be associated with the spherical coordinate set    , *, , ,eq r     , 

where  

 
2

2 / 3 /( 3)
3 *

eq mTan   


  .  
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3 More on the Lode angle parameters 
 

An isotropic model can be explained by the three stress invariants or by the 

pressure, von Mises stress and the third stress invariant. The Lode parameter 

associates to the third stress invariant. Equation (2.4) can be written as  

 

 * * *
1 2 3

2 2 2 2 4
, ,

3 3 3 3 3
eq eq eqCos Cos Cos             

        
               
        

            (3.1) 

 

Further inserting the first Lode angle parameter 1/ 6 / 6      gives 

 

 *
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*
2 1

*
3 1

2
/ 6 / 6 ,

3

2 3
/ 6 ,

3 6

2 7
/ 6
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Cos

     

     

     

 
   
 

  
    

  

  
    

  

 (3.2) 

 

This gives the principal stresses as a function of the triaxiality, von Mises 

equivalent stress and the first Lode angle parameter. Using the second Lode angle 

parameter gives  

 (1 ) /( 3 / 3)ArcTan     . Thus equation (3.2) becomes 

 

 * * *
1

2

* *
2

2

* *
3

2

2 2 1 3

3 3 3 / 3 3 3

2 2 2

3 3 3 3

2 4 3

3 3 3 3

eq eq eq
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Cos Cos ArcTan
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 
       

 


      




      



                              

           
     

            
     

 (3.3) 

This is in agreement with Gruben et al. (2012). Using the Lode angle we achieve 

that  

 

     1 3 2 2 4
1/ 3

3 3 3eq

Cos Cos Cos Sin
 

    


  
     

 
 (3.4) 
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Using the first Lode angle parameter we achieve from equation (3.4)  

 

     1 3
1 1 1

2
/ 6 / 6 1/ 3 / 6 / 6 / 6

3eq

Cos Sin Cos
 

       



      (3.5) 

 

Using the second Lode angle parameter equation (3.3) gives  

 

 

1 3

2 2 2

3 3 2

3 3 3 3 3eq

   

   

  
  

  
 (3.6) 

 

Lets us assume that 1 2 3    . The Tresca and von Mises criterion gives  

 

 

1 3

1 3

2 2

: 1

2 1 2
:

33 1 / 3

eq

eq

Tresca

Mises

 



 

  





 

 

 (3.7) 

 

Thus only for 1    are the two relations alike. This corresponds to 

  10, / 3 1     . 

 

We define the second Lode angle by  

 

 2 / 3Tan    (3.8) 

 

 

This gives that  

 

 
 

 
     

 
  

2
2 2

2

2

1 3
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3
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1 3
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
   







   



 


 (3.9) 

 

During a plane stress situation, 3 0  . This gives that  
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

 
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We also have that 

 

  * * *23 27 1
3 4 3

2 2 3
Cos Cos ArcCos     

    
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    
 (3.11) 

 

For the plane stress we can write that  
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 (3.12) 

 

This gives that 

 

 

 

2 1

1

*

2 2 2

2
2 1

3 2 13 1

3 3 3 13 3 2 1

 
 



 


  


  

  
  

   

 (3.13) 

 

We generally write that  

 

 1 2 1 1 1 10, , 1
p p p p p pp

z                (3.14) 

 

The plastic equations give that 

 

2 12 1

2 1 2 1
, / /

2 2 2

ijp p p
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s
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k

 
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 
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 
 (3.15) 
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Neglecting elastic components give that 
p p
ij ijd  . This gives that  

*
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  
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  

    
       

    
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   
     

  

 (3.16) 

 

4 Conclusion 
 

It has been forecast that Lode dependency must be included to describe ductility. It 

has been shown that internal necking down of ligaments between voids that have 

become significantly enlarged in size dominates at high triaxiality, while internal 

shear localization of plastic strain ligaments between voids that have experienced 

limited growth dominates at low stress triaxiality. We study various mathematical 

relations that may be useful for further studies of the Lode angle and its relation to 

fracture and ductility. 

 

Appendix A: Stress deviators and Lode angle parameters 

 

The stress space can be identified by the three principal components 1 2 3, ,    or 

by the invariants of the stress tensor, to read  
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  (A.1) 

The invariants of the stress deviator  
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,
3
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 (A.2) 
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It is also common to define  
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