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Abstract—We have studied the low complexity adaptive (LCA)
beamformer in active sonar imaging. LCA can be viewed as
either a simplification of the minimum variance distortionless
response (MVDR) beamformer, or as an adaptive extension to
the delay and sum (DAS) beamformer. While both LCA and
MVDR attempt to minimize the power of noise and interference
in the image, MVDR achieves this by computing optimal array
weights from the spatial statistics of the wavefield, while LCA
selects the best performing weights out of a predefined set.

To build confidence in the LCA method we show that a
robust MVDR implementation typically creates weight sets with
shapes spanning between a rectangular and Hamming window
function. We let LCA select from a set of Kaiser windows with
responses in this span, and add some steered variations of each.
We limit the steering to roughly half the −3 dB width of the
window’s amplitude response. Using experimental data from the
Kongsberg Maritime HISAS1030 sonar we find that LCA and
MVDR produce nearly identical images of large scenes, both
being superior to DAS. On point targets LCA is able to double
the resolution compared to DAS, or provide half that of MVDR.
This performance is achieved with a total of 6 windows; the
rectangular window and the Kaiser window with β = 5, in an
unsteered version, and versions that are left and right steered
to the steering limit. Slightly smoother images are produced if
the window count is increased to 15, but past this we observe
minimal difference. Finally we show that LCA works just as well
if Kaiser windows are substituted with trigonometric ones.

All our observations and experiences point to LCA being very
easy to understand and manage. It simply works, and is surpris-
ingly insensitive to the exact type of window function, steering
amount, or number of windows. It can be efficiently implemented
on parallel hardware, and handles any scene without the need
for parameter adjustments.

Index Terms—Beamforming, adaptive beamforming, MVDR,
LCA, sonar, active, complexity.

I. INTRODUCTION

THE best sonars in existence is perhaps found in na-
ture. Bats, for instance, use a high frequency sonar to

detect, identify and track prey with amazing precision in 
caves amongst a myriad of other bats. No man made sonar 
can currenly match this feat, much due to the challenge of 
processing and adapting to such a complex environment fast 
enough. This is why human made sonars have little to no 
adaptivity on transmit. However, several methods have been 
investigated to adaptively process the received acustic data. 
Perhaps the best studied method for reconstructing a sonar 
image out of such data is the minimum variance distortion-
less response (MVDR) beamformer [1]. It adapts the sonar 
array’s spatial response to minimize the influence of noise and 
interference in the final image.
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In many cases MVDR can improve the contrast and reso-
lution of active sonar images compared to conventional static
methods [2]–[4]. However, while the computational complex-
ity of conventional beamformers are linear with the number of
channels, O(M ), MVDR is at O(M3). This is because MVDR
relies on estimating and inverting a covariance matrix. The
estimation step dominates the computation in sonar systems
with less than 32 channels, but here the computational com-
plexity can be reduced and the implementation accelerated
significantly using graphics computing units (GPUs) [5]. For
larger systems the inversion step dominates. This can be dealt
with by approximating the full covariance matrix with a small
one using space reduction techniques such as beamspace pro-
cessing [6], or the closely related principal component analysis
(PCA) [7]. Another alternative is to assume spatial stationarity
to form more easily invertible Toepliz matrices [8]. However,
the mentioned methods are still relatively slow compared to
DAS.

A much faster and simpler alternative to MVDR is the Low
Complexity Adaptive (LCA) beamformer. Based on an idea
by Vignon [9], it was first introduced by Synnevåg et al. in
clinical medical ultrasound imaging [10], who demonstrated
its ability to obtain very similar image quality to MVDR in
systems with focused transmit beams. LCA applies a set of
predefined and static windows, or apodization weights, and se-
lects the one offering the best noise suppression. It relies on the
same optimization criterion as MVDR, thus may be considered
a version of MVDR with a discrete and static window solution
space. Alternatively, it may be viewed as a multi-apodization
technique. One such method is described by Stankwitz et al.
in radar imaging [11], where the best out of 2 or 3 windows is
selected. However, LCA differs in that it typically selects from
a larger pool of windows and allows phase-steered variations
of them. Phase-shifting the windows has the effect of slighly
adjusting the angle the array is steered towards. This gives
LCA an adaptive freedom that lies somewhere in between that
of traditional multi-apodization techniques and MVDR. How
similarly LCA performs compared to MVDR depends on how
well the predefined windows represent the constrained solution
space of MVDR.

Synnevåg et al. suggested using a window set comprised
of rectangular, Kaiser (or Kaiser-Harris) and inverted Kaiser
functions. In total he let LCA choose from 12 unique windows,
6 of which were phase-shifted versions of a fairly wide Kaiser
window, and one were rectangular. Synnevåg’s composition of
windows was motivated by the desire to use wide windows
with maximum sidelobe suppression near the receiver, and
narrow windows at greater depths for maximum sensitivity
and depth penetration. While he achieved good results, it
was not made clear how many windows LCA needs, or how
they ideally should be steered. Also, it is not apparent how
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LCA performs in sonar systems where the transmit beam is
unfocused.

In this study we expand our previous work of applying LCA
to active sonar imaging [12]. We use variations of the para-
metric Kaiser window, but also compare it to the trigonometric
window function. We extend Synnevåg’s work by steering all
our windows and not just some, and demonstrate how LCA’s
performance is affected by the type and number of windows
included. Our results are obtained using experimental data
from the 32 element Kongsberg Maritime HISAS1030 sonar,
which operates at 100 kHz with an −3 dB element opening
angle of 23◦. Although this system was designed as a synthetic
aperture sonar (SAS) where an image is synthesized from
several pings of data, we will only create images out of single
pings (sectorscan imaging) in this study.

Our results show that when MVDR is robustified to work
in active sonar imaging, it computes weights with spatial
amplitude responses that tend to be symmetric and steered
within a fraction of their −3 dB widths. When letting LCA
choose from Kaiser windows with similar responses, we obtain
images with improved noise suppression and resolution. The
resolution gain is made predictable by limiting the maximum
steering to a fraction of the −3 dB width of each window’s
spatial amplitude response. Overall, LCA produces images that
are similar to MVDR, but with a resolution in between that
of DAS and MVDR. LCA is also inherently robust, easy to
implement, and fairly easy to understand.

This article is outlined as follows: In Section II we offer
a gentle introduction to beamforming. Then we move on
to adaptive beamforming and describe the MVDR and LCA
methods in III and IV, respectively. We use LCA with the
Kaiser window which we describe in IV-A, explain how we
steer it in IV-B, and by how much in IV-C. Finally we add
some remarks on using the trigonometric window instead of
Kaiser in IV-D, and of of sampling considerations in IV-E.
Results and discussion are provided in Section V, where
we study MVDR’s windows to find suitable LCA ones in
V-A, assess the range of window types and steering in V-B,
determine the number of windows needed in V-C, and add a
note on computational complexity in V-E. Finally, Section VI
provides a conclusion.

II. RECEIVE BEAMFORMING

A sonar image is formed by estimating source locations
and amplitudes. For this purpose a spatial bandpass filter is
applied to the backscattered wavefield data. The filter is called
an array processor or receive beamformer. The basic principle
is to apply delay and weights to the sensor channels before
summing them up, chosen such that signals from the location
of interest are summed coherently, while other sources sum
incoherently.

Assume that the wavefield has been sampled by an M
element uniform linear array, and that the signal signature
has been removed by a matched filter. Let xm[θ, n] be the
delayed data from the mth channel, where the θ and n
are the azimuth angle and range sample of the focus point,
respectively. Each angle θ will be processed independently, so

to simplify notation we will assume the dependence on θ to
be implicit from now on.

The output z[n] of a beamformer is defined as the weighted
sum of all the delayed data samples:

z[n] = wH [n]x[n] =


w0[n]
w1[n]

...
wM−1[n]


H 

x0[n]
x1[n]

...
xM−1[n]

 , (1)

where wm is the weight factor assigned to channel m. A
weight set is commonly called a window, apodization or
taper function. When the window is real its response is
symmetric. Applying a real window that trails off towards the
edges creates a response with lower sidelobe levels and wider
mainlobe, which translates into improved noise suppression at
the cost of reduced resolution, respectively [13].

Conventional beamformers all have static and usually real
weights. The reference method is the delay-and-sum (DAS)
beamformer, also know as the backprojection algorithm. It
delays each pixel into focus, then applies a suitable window,
and finally sums the data. The virtue of DAS is its simplicity,
robustness to parameter errors, linear processing of the image
and the ease of which it can be implemented in parallel
hardware.

Adaptive beamformers are dynamic and seek to adjust the
array response to better fit the incoming wavefield. This may
be achieved by allowing either the weights or delays to change,
or both. Here the weights are usually complex, which allows
asymmetric responses. One of the most extensively studied
adaptive methods is the minimum variance distortion-less
response (MVDR) beamformer.

III. MVDR

MVDR seeks to minimize the power of noise and interfer-
ence in the output of the beamformer, under the constraint of
unity gain in some desired direction φ [1]. With the assumption
of zero mean data this takes the form of minimizing output
variance:

argmin
w[n]

E{
∣∣z[n]

∣∣2} = argmin
w[n]

w[n]R[n]wH [n]

subject to wH [n]aφ = 1. (2)

Here aφ is a steering vector for an azimuthal steering angle φ,
E{·} is the expectation operator, and R[n] = E{x[n]xH [n]}
is the spatial covariance matrix for the full array. This is a
convex optimization problem with the unique solution:

w[n] =
R−1[n]aφ

aTφR
−1[n]aφ

. (3)

The problem lies in estimating and inverting the spatial co-
variance matrix. We have described the exact steps in [5]:
To avoid signal cancellation we apply spatial averaging by
computing a mean covariance matrix from a set of subarrays
with length L [14], for true speckle statistics we perform
temporal averaging over Nk = 2K+1 temporal samples [15],
and to improve robustness to parameter errors we add ε percent
of the total output power to the matrix’s diagonal [16], [17].
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Fig. 1. Each Kaiser window is steered in the interval φ ∈ [0, φ3 dB(β)]. The
angle φ3 dB(β) is the amount of steering needed for the steered amplitude
response to have a −3 dB crossing that is exactly half that of the unsteered
window. With each window steered this way we expect the resolution gain to
remain predictable and independent of β, and we also effectively constrain
the white noise gain of the beamformer.

Fig. 2. The submerged object used to test beamforming resolution is a 1 m
by 1 m test cross attached to an anchor with a diameter of approximately
13 cm. Source image curtesy of Bundeswehr Technical Center for Ships and
Naval Weapons, Maritime Technology and Research (WTD 71).

These steps are also needed to ensure that the covariance
matrix is numerically well conditioned and hence invertible.

IV. LCA

A much less complex alternative to MVDR is the low
complexity adaptive (LCA) beamformer. It iterates through a
set of P windows and selects the window p that best fulfills
the minimum variance criterion:

argmin
p

E{
∣∣zp[n]

∣∣2} = argmin
p

E
{∣∣wH

p x[n]
∣∣2}

subject to wHaφ = 1. (4)

Note how closely LCA is related to the MVDR definition in
(2). The optimization criterion and constraint is the same, but
LCA has a finite and discrete solution space for the weights.
As will be demonstrated in Section V-A, LCA performs simi-
larly to MVDR because a robustified MVDR implementation

seems to be constrained to window functions similar to the
ones we let LCA choose from.

In practice, we estimate the beamformer output power by
computing a sample power average s2z:

E
{∣∣z[n]

∣∣2} ≈ s2z =
1

Nk

n+K∑
n′=n−K

∣∣z[n′]∣∣2
which computes the sample power average over Nk = 2K+1
temporal samples. This is the same temporal averaging method
we use for MVDR. In our case the bandwidth of our matched
filtered signal is a just few samples long, hence K = 1 will
be used for both MVDR and LCA throughout this work.

If the pixels are correlated laterally, we can include a
weighted combination of these to improve the variance es-
timation:

s2z =
1

NxNk

x+X∑
x′=
x−X

n+K∑
n′=
n−K

ω[x′, n′]
∣∣z[x′, n′]∣∣2 (5)

where Nx = 2X + 1 is the number of azimuth lines to
average over, and ω[x′, n′] is a normalized 2 dimensional
weight function. Since we oversample slightly laterally when
we delay each pixel (see Section IV-E), we thought the lateral
correlation to be sufficient to benefit from this. However, we
observed no visual improvement from applying this technique,
and decided not to use it.

A. Window function: Kaiser

As will be demonstrated in upcoming sections, the LCA
beamformer works very well with windows generated from
the Kaiser-Bessel function. We will express it in vector form
as:

fβ =

 f0(β)
...

fM−1(β)

 (6)

where

fm(β) =

I0

(
πβ

√
1−

(
2m
M−1 − 1

)2)
I0(πβ)

(7)

and I0 is the zeroth order modified Bessel function of the first
kind:

I0(x) =

∞∑
a=0

[(
x
2

)a
a!

]2
. (8)

The Kaiser-Bessel window is near optimal in the sense of
having its peak energy concentration around θ = 0◦, for a
given space-bandwidth product related to the Kaiser parameter
β as:

β =
TB

2
, (9)

where T in our case is the spatial extent of the window and B
is its bandwidth. Adjusting β changes the trade-off between
mainlobe width and sidelobe level. When β = 0 the window
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MVDR image parameters: K=1, L=16, ε=0.01, Nx=600, Ny=900, window frequency responses created from 40x40 pixel groups

Fig. 3. Determining LCA window type: MVDR image with typical frequency responses for windows used in various pixel regions.
Left: MVDR sectorscan image of the oiltanker Holmengraa, with 40x40 pixel groups for the shadow, highlight and speckle region of the image indicated

with red boxes.
Right: MVDR window amplitude and phase responses computed from the 40x40 pixel groups. The responses are overlayed each other and the amount of

overlap is colored using a logarithmic scale. The size of the pixel groups were chosen ad-hoc for the histograms to be visually invariant to a shift in
position within the same region. Since each pixel is pre-delayed into focus the unsteered responses all have their center at broadside. The dashed red
lines at -13 dB and -43 dB marks the peak sidelobe levels of an unsteered rectangular and Hamming window, respectively. Note how the responses
are more or less symmetric, with very little steering in the shadow, moderate steering in speckle and steering within roughly 3 dB in highlight. The
phase varies most in the highlight region where we see the highest contrast.

becomes rectangular, while at large values (β > 5) the window
converges to a Gaussian both in time and frequency. This class
of windows is generally considered well suited for separating
closely spaced sources with amplitudes of a high dynamic
range [13], they are easy to make, and they are optimal for
any value of β.

B. Steering
Adding slightly steered versions of each window to the

window database gives LCA greater flexibility in searching
for an optimal window. A Kaiser window fβ steered to the
azimuth angle φ can be expressed as

wβ,φ =
fHβ diag(aφ)

fHβaφ
(10)

where diag(aφ) is a diagonal matrix constructed from the
steering vector aφ:

aφ =


1

e−j
2πd
λ sin(φ)

...
e−j

2π(M−1)d
λ sin(φ)

 . (11)

Here d is the element spacing, λ is the wavelength and φ is
the steering amount. The normalization factor fHβaφ is the
reciprocal of the window’s coherent gain. It ensures unit gain
in the direction of interest as required by (4). Since the signal-
to-noise ratio is constant for a specific window (same β-value),
this normalization also proportionally increases the incoherent
noise gain.

The window database we will construct will contain Nβ
Kaiser windows with unique β-values, each being steered in
Nφ different directions. This gives us Nw = NβNφ unique
windows.

C. Steering bounds

Each window’s spatial response is constrained to unit gain
in the look direction. Hence, when it is steered the white noise
gain must increase and the the signal-to-noise ratio decrease,
as shown in Fig. 1. To limit this we place an upper bound to
the steering, chosen such that wide windows are allowed to be
steered more than narrow ones. We call this upper bound for
steering φ3 dB(β), and define it as the steering angle needed
for the steered amplitude response to have a −3 dB crossing
that is exactly half that of the unsteered window. The method
we devised for finding it is described in Appendix A.

Henceforth any steering will be specified relative to this
upper bound. With each window steered this way we expect
the resolution gain to remain predictable and independent of
β, and we also effectively constrain the white noise gain of
the beamformer.

D. Trigonometric windows

While we focus on using LCA with the Kaiser window func-
tion, we will for comparison also test it with the trigonometric
window function. Its definition is:

fm(α) = α− (1− α) cos
( 2πm

M − 1

)
, (12)

where we apply the constraint α ∈ [0.5, 1] to avoid windows
with negative coefficients. Steering is applied as in (10), and
the α-value that halves the −3 dB distance is found using the
method described in Appendix A.

E. Oversampling

The ultimate goal of adaptive beamformers is to take the
information available in the wavefield and use it to either
improve image resolution, sidelobe suppression, or preferably
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LCA image parameters: Nx=400, Ny=400, Nβ=19, Nφ=19, K=1

Fig. 4. Determining Kaiser parameter boundaries: LCA images of the resolution test cross and anchor created with a large window database, but where the
upper bounds for β and φ are varied. The upper left image is equal to DAS with a rectangular window. For all images we measure the lateral distance ∆x
between the two −3 dB points of the anchor (red object). These are specified relatively to the reference distance ∆xref from the upper left DAS image.
Upper bound β: Observe that LCA gets better at suppressing sidelobes in the image as we increase the upper bounds for β. Fig. 3 suggests that MVDR

prefers windows with sidelobe levels lower than that of Kaiser with β = 2, but here we observe further improvement going to β = 5.
Upper bound φ: As we increase the upper bound of the steering φ, we also increase the lateral image resolution.

both. This non-linear processing increases the image band-
width and introduces a need for a sampling rate higher than
the Nyquist rate. For MVDR a lateral oversampling factor of
10 compared to the Nyquist rate is often needed to ensure
minimal spatial shift-variance in source amplitude [18].

Since LCA operates with the same optimization criterion
as MVDR, we will be using approximately a factor 8 lateral
oversampling for both beamformers. The images appear more
visually pleasing and detailed up to 8. We consider an absolute
minimum to be 2, due to the non-linear nature of delaying
pixels that isn’t strictly in the far field, and of displaying
the absolute value of the pixels on a decibel scale. In Media
Movie 11 we visualize the effect of changing the lateral
oversampling factor on a set of LCA images. Upon display
the images were all bilinearly upinterpolated to the same size.

V. RESULTS AND DISCUSSION

To test the performance of the MVDR and LCA beam-
formers, we have processed data acquired by the Kongsberg
Maritime HUGIN AUV carrying their 32 element HISAS1030
sonar [19]. It is a high resolution sonar with 1.2 m array
length, 100 kHz operating frequency, 30 kHz bandwidth and
23◦ element −3 dB opening angle.

Two different scenes will be studied. One of the 1500 DWT
oil tanker wreck Holmengraa lying at a slanted seabed at 77 m

1For media location refer to Appendix C.

depth outside of Horten, Norway [20]. It measures 68 m by
9 m and fills most of the highlighted sector. This data was
collected by the Norwegian Defense Research Establishment
and Kongsberg Maritime. The other scene is of an 1 m by 1 m
iron resolution test cross, connected to a an anchor with 13 cm
diameter (Fig. 2). This data was collected by the Bundeswehr
Technical Center for Ships and Naval Weapons, Maritime
Technology and Research (WTD 71).

In the image reconstruction we have run MVDR with
subarray length L = 16 and ε = 1% diagonal loading. Both
MVDR and LCA was run with K = 1 temporal averaging.
This is a fairly aggressive yet stable set of parameters [15].

The results will be presented in the following order: In
Section V-A we discuss typical window responses computed
by MVDR, and hypothesize that these can be mimicked
by Kaiser windows. In Section V-B we determine sensible
boundaries for the Kaiser parameter β and window steering
φ. In Section V-C we discuss how many window variations
are needed for LCA to perform well.

A. LCA window function

Assuming that a robust MVDR is the reference method we
want LCA to perform similarly to, it seems sensible to create
a window database for LCA with spatial responses similar to
the ones that MVDR computes. We study this in Fig. 3, where
we present the typical amplitude and phase responses for the

http://folk.uio.no/joibu/articles/2015_JOE_LCA/media1.mp4
http://folk.uio.no/joibu/articles/2015_JOE_LCA/media1.mp4
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(b) φ-values of the Kaiser window chosen for each image pixel. On strong sources LCA selects windows that are steered away from the source. This is what
improves the FWHM measurement in Fig. 4.

Fig. 5. Kaiser windows chosen for each pixel in the image of the resolution test cross. The underlying image is the one shown in Fig. 4, with the same
parameters. The location of the anchor, cut line and main scatter locations of the cross is marked in red.

windows that MVDR creates in shadow, speckle and highlight
regions of the Holmengraa scene.

Observe from Fig. 3 that MVDR seems to prefer symmetric
window responses, even if it is free to choose non-symmetric
ones. The symmetry is most predominant in shadow and
speckle regions, while in highlight the windows are approxi-
mately symmetric within the illuminated sector of the seafloor.
We have observed this symmetry to be a side-effect of the
averaging steps needed to build the sample covariance matrix,
which are required for MVDR to operate with very little to
no temporal sample support in an active system. The peak
sidelobe levels of the MVDR windows are mostly between
−13 dB and −43 dB. This corresponds to that of an unsteered
rectangular and Hamming window, or an unsteered Kaiser
window with β = 0 and β = 2, respectively.

From this we hypothesize that a good window database
LCA can be made using a varied set of Kaiser windows. If they
span a suitable range of β-values, and some steering variations
are applied to each, we should have responses that resemble
those in Fig. 3. The Kaiser window is easy to compute, is
fairly insensitive to coefficient inaccuracies, and span shapes
from rectangular to Gaussian. It is also optimal in the sense of
having its peak power concentration near the steering angle.

Unlike the method described by Synnevåg [10] we do not
let LCA choose from inverted Kaiser windows. These have a

mainlobe width narrower than that of the rectangular window,
but at the expense of very poor white noise gain. We have
found that these windows hardly ever get used on experimental
data, in particular steered versions of them. We can infer the
same from Fig. 3 by noting that the maximum sidelobe level
rarely exceeds the rectangular window level of −13 dB.

Media Movie 22 animates how Fig. 3 changes as a function
of the MVDR subarray length L and temporal averaging K.
At L = 1 the window responses are rectangular in all areas
in the image. At L = 2 we observe window responses with
slight amplitude variations in the highlight region, but with
the phase being 0◦ in the illuminated seafloor sector. Already
at L = 2 the MVDR is able to greatly suppress noise. This
is a common observation; adding a little flexibility to adapt to
the scene has a dramatic effect, but allowing full flexibility is
much less significant. The media file also shows that MVDR
can be run with subarray sizes L ∈ [M/2, 5M/8], but only
with temporal averaging K = 1 or above.

B. Kaiser parameter β and steering φ

To determine a suitable range for the Kaiser parameter β and
phase steering φ, we constructed large and equally sized win-
dow databases containing Kaiser windows with varied upper

2For media location refer to Appendix C.

http://folk.uio.no/joibu/articles/2015_JOE_LCA/media2.mp4
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DAS. Observe that finer sampling of the β-range improves sidelobe suppression but leaves resolution unchanged. Adding more steering-variations improves
both sidelobe suppression and resolution. However, using more than Nβ = 2 window types and Nφ = 3 steering angles makes minimal difference.

boundaries for β and φ. The lower boundaries were chosen as
β = 0 and φ = 0◦, which includes the rectangularly weighted
DAS image. The resulting images are shown in Fig. 4. In
each image we computed the lateral distance ∆x between
the −3 dB points of the anchor, with the reference ∆xref
being the rectangularly weighted DAS image. A fourth order
polynomial fit was used in this computation. The measure
∆x is also commonly called the full width half maximum
(FWHM). In the case of a imaging a point scatter, it is closely
related to the resolution of the system. For a rectangular
window, for instance, the system resolution is approximately
δx ≈ ∆x/0.89 [13].

The LCA images in Fig. 4 demonstrate the effect of
adjusting the upper bound of β and φ. As suggested by Fig. 3
we first attempted to use β ∈ [0, 2]. While this significantly
improved sidelobe suppression, a slight further improvement
was observed up to β ∈ [0, 5]. This can likely be explained
by the need to compensate for the increased sidelobe levels
caused by steering. No noticeable difference were observed
for higher values than β = 5. The images also demonstrate
that increasing the upper bound for steering φ improves the
resolution of the strong scatterers. For this sonar the Rayleigh
resolution is δx ≈ 0.0125 radians (0.72◦), so a point scatterer
imaged at 19 m range with a rectangular DAS would have
a lateral ∆x ≈ 0.0125 · 19 m · 0.89 = 21 cm. This is close
to the FWHM of the anchor in the DAS image in Fig. 4,
which means that the acoustic fingerprint of the anchor is
similar to a point source. This further implies that the anchor

reflections are specular and that we view its rounded side. As
we increase steering to either 50% or 100% of the −3 dB width,
the FWHM drops to 73% or 53% to that of the rectangular
window, respectively.

Fig. 5a and Fig. 5b illustrates which β and φ values LCA
prefers for different regions in the image of the resolution
test cross. Red marker lines are used to pinpoint the cut
line, location of the anchor and strong scatters on the cross.
Observe that in the anchor region only narrow responses
(β = 0) are used, which is the reason for the anchor FWHM
being measured to the same value regardless of the upper
bound of β in Fig. 4. On other scatterers with strong nearby
lateral interference LCA prefers wider windows to suppress
the interference. When allowed LCA prefers to steer windows
away from the sources, but we never let it exceed the φ3 dB(β)
limit. When exceeding this bound we observed oscillation
artifacts in the image.

C. Window database size

So far we have found it reasonable to use Kaiser windows
in the range β ∈ [0, 5], each steered within the range
|φ| ∈ [0, φ3 dB(β)]. What remains is to determine the number
of windows needed. We study this in Fig. 6, where we compare
LCA images made from windows databases of different sizes,
but with the same parameter boundaries. Included are the re-
sults from using a single window (Nβ = 1) and steering angle
(Nφ = 1), which corresponds to an unsteered rectangularly
weighted DAS.
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detail level. The adaptive methods produce nearly identical images.

Fig. 7. Comparing image quality of DAS, MVDR and LCA with Kaiser or trigonometric windows.

Observe that a finer sampling of the β-range improves
sidelobe suppression but leaves resolution unchanged. Adding
more steering-variations improves both sidelobe suppression
and resolution. We observe major improvement going to
Nβ = 2 and Nφ = 3, but minimal improvement by adding
yet more windows.

D. Image quality

We compare LCA image quality to that of DAS and MVDR
in Fig. 7. In Fig. 7a we display the images computed by LCA
using Kaiser windows, LCA using trigonometric windows,
and MVDR. Two lateral image cuts through all images are
presented in the left plot. The images and their corresponding

cuts are nearly identical for the LCA version with Kaiser
windows and the one with trigonometric windows. Compared
to DAS the LCA produces images with an FWHM that lies
in between that of DAS and MVDR.

In Fig. 7b we show full sector images of the Holmengraa
wreck. We compare the images produced by a Hamming
weighted DAS, by MVDR and by LCA with Kaiser or
trigonometric windows. All the adaptive beamformers produce
a sharper and less noisy image than DAS, but the differ-
ence between LCA and MVDR is minimal. The LCA image
produced with Kaiser windows appear identical to that from
trigonometric windows.
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E. Computational complexity

The computational complexity of MVDR is generally con-
sidered to be of O(M3). However, the implementation we
are using is optimized so that building the spatial covariance
matrix is of O(NkNL, L2), and inverting it is of O(L3). We
describe this implementation in [5], and a beamspace version
in [6], where we implement it on a graphics processing unit
(GPU) for nearly two orders of magnitude speed increase
compared to a straightforward C implementation. However,
MVDR is not ideal for GPUs due to the complex data
dependencies present in the covariance computation, and at
best we only managed to utilize 10% of the GPUs maximum
theoretical potential.

In comparison, LCA is of O(MNβNφ), and extremely well
suited for GPUs. Each pixel depends on only a small subset
of data, and the windows can be precomputed and stored in
GPU cache for near immediate access. Furthermore, if we
use the trigonometric window function we can solve for the
window parameter analytically as described in Appendix B.
This reduces the complexity to O(MNφ), because the only
remaining LCA parameter to create windows for will be the
steering angle.

VI. CONCLUSION

LCA seeks to improve image resolution and contrast by
minimizing the power of noise and interference in each image
pixel. This is the same optimization criterion as MVDR uses,
but instead of computing an optimal array window like MVDR
does, it selects the best window out of a predefined set. Hence,
it can be viewed as either a reduced and discrete window
space version of MVDR, or as an advanced multi-apodization
technique. In this paper we have studied which windows we
should ideally let LCA choose from.

We found LCA to be surprisingly insensitive to the exact
window function it is used with, supported by the observation
that near identical images were produced whether we used
Kaiser windows or trigonometric ones. However, LCA must be
able to choose between wide and narrow window responses,
since the wide ones offer the best sidelobe suppression and
the narrow ones offer the best sensitivity. We achieved good
results with 2-3 Kaiser windows in the range β ∈ [0, 5], and
observed minimal difference when adding more windows or
adjusting the upper bound of β. For the steering angle we
suggest a value in the range φ ∈ [±δφ3 dB(β)], where φ3 dB(β)
is the bandwidth of the respective window, and δ is a scaling
parameter. Setting δ to either 50% or 100% reduces the lateral
point target size to 73% or 53% compared to the rectangular
window, respectively. Hence, this parameter can be used to
control the aggressiveness and resolution gain of LCA.

In summary, LCA is an attractive alternative to other adap-
tive beamformers due to being very fast, simple to under-
stand, practically parameter-free, inherently robust, and able
to produce images similar to that of MVDR. Contrary to
MVDR, it has a low computational complexity and can be
easily and efficiently accelerated using e.g. GPUs. Also, since
LCA performs just as well if we use trigonometric windows
instead of Kaiser ones, we can compute the optimal window
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parameter analytically for any given steering angle and avoid
the search over the window parameter entirely.

APPENDIX A
STEERING ANGLE

One of the goals of this article was to characterize the
windows used by the MVDR method, and then identify a
subset of these that were suitable for use with the LCA
method. We determined that the Kaiser function could fit the
role of producing the relevant windows. The spatial response
of a steered Kaiser window depends on the number of channels
M , the element spacing relative to the wavelength d

λ , the
Kaiser parameter β, and the amount of steering φ.

To control the resolution gain of LCA, we wanted to
determine the extent that the windows need to be steered
to cut the angle of the −3 dB point of the window’s spatial
amplitude response by a fixed amount, say, by a factor 2 as
reference. We computed this steering angle for some common
configurations of the mentioned parameters, see the result in
Fig. 8. The boundary values of the Kaiser window is shown,
i.e. the rectangular window at β = 0 and the near gaussian
window at β = 5, as well as one in between at β = 2.5.
Observe that for a given M and β, the angle φ3 dB scales
near proportionally with d

λ . We found this to be true also for
d
λ ∈ {0.5, 4}. Hence, an approximate figure for a rather wide
range of system parameters can be derived off this figure.

For the sake of completeness we also supply the source
code, see Appendix C.

APPENDIX B
REDUCING LCA COMPLEXITY

Throughout this article we have used LCA with the Kaiser
window function. However, as shown in Fig. 7 we can obtain
similar performance using the trigonometric window function.
For this window we can obtain an analytic solution for the
optimal value of α in the minimum variance sense. The
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following derivation generalizes that of the non-steered (real)
window described in e.g. [21] to also apply for the steered
(complex) window. We start by inserting the trigonometric
function (12), with applied steering (11), into the beamformer
equation (1):

wHx =

M−1∑
m=0

[aφ]m

(
α− (1− α) cos

(
2πm

M − 1

))
x∗m

= αaTφx− (1− α)bTφx (13)

where [aφ]m is the mth component of the steering vector aφ
defined in (11), and

bφ = diag(aφ) ·
[
1 cos

(
2π
M−1

)
cos
(

2π2
M−1

)
. . . 1

]T
.

(14)

Unity gain in the look direction is ensured as long as the
weights sum to one:

wT1 =
(
αaφ − (1− α)bφ

)T
1 = 1. (15)

This is true for any value of α if aTφ1 = 1 and bTφ1 = 1.
Hence, we preserve the unity gain constraint as long as we
normalize aφ and bφ.

Now let a = aTφx and b = bTφx. The beamformer output
can then be written as:

|wHx|2 =
∣∣∣αa− (1− α)b

∣∣∣2
= α2(aa∗ + ab∗ + a∗b+ bb∗)

− α(ab∗ + a∗b+ 2bb∗) + bb∗ (16)

This is a convex function with a single minimum, which we
find by differentiating with respect to α and setting equal to
0:

∂

∂α
|wHx|2 = 2α(aa∗ + ab∗ + a∗b+ bb∗)

− (ab∗ + a∗b+ 2bb∗) = 0, (17)

which has the solution:

α =
ab∗ + a∗b+ 2bb∗

2(aa∗ + ab∗ + a∗b+ bb∗)
. (18)

In this computation there are only 4 and 7 unique complex
additions and multiplications, respectively. If we used this
to analytically solve for α, but perform the search for φ,
the computational complexity of LCA would be of O(MNφ)
instead of O(MNαNφ). The solution for α would also yield
the optimal beamformer output in the minimum variance
sense.

APPENDIX C
MULTIMEDIA FILES AND SOURCE CODE

This article is accompanied by some multimedia files and
source code for determining steering boundaries for LCA’s
windows. The files are located at:

http://folk.uio.no/joibu/articles/2015 JOE LCA
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