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Abstract

In this paper we construct linear, uniformly stable, wavelet-like functions on
arbitrary triangulations. As opposed to standard wavelets, only local orthogo-
nality is required for the wavelet-like functions. Nested triangulations are ob-
tained through refinement by two standard strategies, in which no regularity
is required. One strategy inserts a new node at an arbitrary position inside
a triangle and then splits the triangle into three smaller triangles. The other
strategy splits two neighboring triangles into four smaller triangles by insert-
ing a new node somewhere on the edge between the triangles. In other words,
non-uniform refinement is allowed in both strategies. The refinement results
in nested spaces of piecewise linear functions. The detail-, or wavelet-spaces,
are made to satisfy certain orthogonality conditions which locally correspond to
vanishing linear moments. It turns out that this construction is uniformly sta-
ble in the L, norm, independently of the geometry of the original triangulation
and the refinements.
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1. Introduction

Wavelets have become a popular tool in many areas of mathematics and

science. Classical wavelets were defined on regular uniform grids over the whole
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real line and were required to satisfy strong orthogonality conditions [4]. Early
extensions relaxed the orthogonality conditions and provided simple restrictions
to intervals, cf, [2]. The use of spline wavelets provided better treatment of
boundary conditions on intervals, as well as a natural construction of wavelets
on non-uniform grids, as shown in [1], [3] and [8].

Any univariate construction, including wavelets, can be extended to the mul-
tivariate setting by the standard tensor product construction. Various kinds of
wavelets have also been constructed on triangulations, but to our knowledge,
the most general setting for these constructions is a non-uniform base triangu-
lation with some kind of uniform refinement rule, see e.g. [5], [6], [7], [10], and
[11].

Construction of wavelets over irregular grids raises an additional issue, namely
whether the construction is stable independently of the grid geometry. It was
recently shown in [9] that this is indeed the case for univariate, linear wavelets
on irregular grids with vanishing moments when the stability is measured in the
uniform norm.

The purpose of the present paper is to generalize the results in [9] to linear
wavelets over general triangulations. Linear wavelets that are locally orthogonal
to the original basis of hat functions are constructed. We use two standard, but
not widely used, refinement rules, which both allow non-uniform refinement.
These wavelets are shown to be uniformly stable, independently of the topology
and geometry of both the original triangulation and the refinements. As in
[9] we measure stability in the uniform norm. We limit our studies to general
triangulations that can be projected onto a plane.

In section 2 we give a brief overview of the construction. In section 3 we
discuss the first refinement strategy in detail, including stability results, and in
section 4 we discuss the second strategy. In section 5 we then combine these
results and consider iterated refinement with a combination of the two strategies.

We end with some examples in section 6 and conclude in section 7.
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2. An overview of the wavelet construction

Let N be a finite set of points in R2?, usually referred to as nodes. Any set
of three nodes forms a triangle, and a triangulation A over N is a collection of
triangles with the property that two triangles in A are either disjunct, or have a
vertex or edge in common. We will refer to the number of edges emanating from
a node as its valence. For each node v € N we construct the linear B-spline
(hat function) ¢,, with the property that for any two nodes o, 8 € N we have
$a(B) = bap-

We start with an arbitrary base triangulation Ag defined over an initial set
Np of nodes. We then refine the base triangulation through node insertions,
where each node is inserted according to one of two alternative strategies. The
first strategy is to insert a new node p in the interior of a triangle T = (v, v1, v2)
and split the triangle into three smaller triangles, as shown in figure 1(a). The
inserted point p can then be expressed as a convex combination of vg,v; and
v2 by p = agvg + a1v1 + az2v2, where a = (ao, a1, az) contains the barycentric
coordinates of the point p, i.e., they satisfy a; > 0 and Z?=0 a; = 1. For p to
be inserted inside the triangle, we require 0 < a; < 1. The second strategy for
node insertion is to insert the new node p along an edge e = (vo, v1) and divide
each of the two triangles sharing the edge into two new triangles, as shown in
figure 1(b). The new node can now be expressed as p = Avg + (1 — A)vy, where
0 < A < 1. Regardless of the insertion strategy, we can construct a new hat
function oy, such that o,(p) =1 and op(v) = 0 for all nodes v € Np. In either
case we denote the new set of nodes Ny U {p} by N1 and the new triangulation
by A;.

If we allow one or more a; € {0,1} or A € {0,1} for an inserted knot p, the
corresponding hat function ¢, will be discontinuous. For simplicity we will not
discuss these cases in this paper.

We will now give an overview of our wavelet construction for node insertion
strategy 1. Strategy 2 is treated later in a similar way. The set ¢ = {¢y, |

v € Np} forms a basis for the space Vo = V(Aq) of continuous functions that
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(a) Insertion of a node inside a triangle. (b) Node insertion on an edge.

Figure 1: The two strategies for refining a triangulation.

are linear on each triangle in Ag. Similarly, the set 4 = {~, | v € N} forms
a basis for the refined space Vi, and it is well-known that Vo C V;. The
natural generalisation of the construction in [9] is to construct an alternative

basis {¢, 1,!3,,} for V, with the property that
/ hpg =0, forg=1,z,y,
R2

Here )y = vp — S22, cidw,, where v; are the vertices of the triangle that
contains p, and (c;)?_, are certain coefficients (c;)?_, to be determined. These
equations constitute a linear system of equations for determining the unknown
coefficients, but unfortunately, it turns out that this construction is not stable
independently of the geometry. More specifically, there exist triangulations such
that the resulting linear system of equations is singular. An example of such a
triangulation is shown in figure 2.

We want to construct an alternative basis {¢,vp} for Vi with the property

that the function t; satisfies the orthogonality condition

[ bun=0 (1)
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Figure 2: An example of a triangulation that causes problems if we require vanishing moments
with 1, z, and y when inserting the node p. The left figure shows the topology of the
triangulation, while the right figure shows a position of the node v3 for which the associated
linear system of equations is singular. Note that the topology in both triangulations is the
same. In the right triangulation, some of the triangles are deformed, but they have not

collapsed.

for all v € N for which ¢, is not identically equal to zero on the support of op,
i.e., for all v in the ring around p. For strategy I there will be three such hat
functions, based at the three vertices surrounding p in figure 1(a). For strategy
IT we see from figure 1(b) that there will be four such functions. We construct
1p by finding constants c¢; such that the function

n—1

wp =" — Z Ci¢vi (2)

=0
satisfies the orthogonality conditions, with n = 3 for the first strategy and n = 4
for the second. This is a standard way to adjust wavelets, see e.g. [12].
In practice, the sets of nodes Ny and Ni, as well as the basis functions ¢
and -, will necessarily be listed in some order. However, the particular ordering

employed is not essential.

3. Node insertion according to strategy 1

3.1. Defining equations

A triangle Ty = (v, v1,v2) is refined by inserting a node p as shown in

figure 1(a). We want to construct the corresponding wavelet function ¥ given

DOl til publisert versjon / DOI to published version: 10.1016/j.matcom.2016.09.006



83

84

87

91

02

93

o4

by (2) such that it satisfies the three conditions (1) with v = v; for i = 0, 1, 2.

In other words
Yp = T — CoPuy — C1Pw; — C20u,, (3)

and we determine the three coeflicients cg, ¢; and c2 by solving the linear system

f¢vo¢vo f¢vo¢v1 f¢vo¢vz Co f¢vo7p
f¢v1¢vo f¢v1¢01 f¢v1¢v2 a | = f¢v17p
f¢vg¢vo f¢vz¢’ul f¢vz¢’u; C2 f¢v27p

For reference, we let this linear system be denoted by
Mz =Fy. (4)

The integrals in M can be expressed explicitly, since the functions ¢, and
7p are linear B-splines. As shown in [6], the integral [} fg for two linear func-

tions f and g over a triangle T = {vp,v1,v2} can be expressed as

_ A
[ 9= S5 m(r.9), (%)
where A(T) is the area of T' and
hr(f,9) = fogo + fig1 + fagz + (fo + f1 + f2)(g0 + 91 + g2)- (6)

The values f; and g; for i = 0,1,2 are the values of the functions f and g¢
evaluated at the vertex v; of T'.

Let S, denote the support of ¢, and Ses = S N Sp for nodes o, 8 € N.
Also let A(S,) denote the area of S,. Then the integrals can be expressed by

A(S.)/8, = f;
/¢a¢ﬂ _ (Sa)/ a=4 @
A(Sap)/12, a# B

and
1
[ bwro = AG @+ D), ®)
where a; is the barycentric coordinate of v; in the expression for node p,
P = agvo + a1v1 + a2, (9)
6
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and Sp is the support of vp.

We now divide the total support of the hat functions in the system as shown
in figure 3. For i = 0,1, 2,3, T; denotes a triangle, while for i = 4,5, 6, T; denotes
a set of triangles. More explicitly, 74 denotes all triangles with a common vertex
at vg, except for the three explicitly indicated triangles Ty, 71 and T3, and
similarly for Ts and Tg. For i = 0...6, the area of T; is denoted by A; = A(T3).
From the formulas (7) and (8) we then see that the matrix M and the vector

F'1 can be expressed by

2(Ao + A1 + Az + Ay) Ao+ Ay Ao+ A3
M; =15 Ag+ Ay 2(Ao + A1 + A2 + As) Ao+ Ay
A + Az Ao + Az 2(Ag + Az + A3 + Ag)
(10)
and
A ap+1
FI=1—§ a,1+1 . (11)
a2 +1

These are the basic equations that govern the construction of the wavelet func-

tions.

3.2. Bounding the coefficients

When only one new node is inserted, the challenge in constructing wavelets
that are uniformly stable is to bound the coefficients « = (¢p, ¢1,¢2) indepen-
dently of the triangulation and its refinement. We first record some properties

of the matrix M.

Lemma 1. The determinant of M is nonnegative, and det M > 0 if the
triangle Ty that is refined has nonzero area. Let M, denote the submatriz of
M obtained by removing column 1 and row i, and set D; = det M;. Then

Dy > |D2| and D1 > |D3|

ProOF. The B-splines ¢; are linearly independent provided that the triangle

To that is being refined has nonzero area, and it is well-known that a Gram
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Figure 3: Overview of the regions involved in the equations for strategy I. Note that Ty
denotes the region defined by all the triangles with a common vertex at vo, except for the
three explicitly indicated triangles To, 71 and T3. The same applies to Tt and Ts. The area
of region T}, is denoted by Ag.
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matrix of linearly independent functions has a positive determinant. To derive
the relations between the sub-determinants one may for example check that all
four inequalities

D, —D; >0, D;—D3>0,

Dy +Dy>0, Di+D3>0
hold — this follows quite easily by simply expanding the determinants.

To bound the coefficients, we partition the matrix M by its columns as
M; = [mi,my, m3] (note that we include the factor 1/12 in each of the
columns). By Cramer’s rule, the solution of (4) is then given by

_ det[F, m2, m3] _ detfmy, F,m3] _ det[my, my, F|

=y e TR = , = 12
@ detM; 4 det M ; “ det M (12)
Because of symmetry, it is sufficient to obtain a bound for one of the coefficients,

say cg.

Lemma 2. The coefficient cy is bounded by

Ap
Apg+ As + 6(A1 + A3)/7

[eol < (13)
where the A;s denote the areas of the corresponding triangles in figure 3.

PrOOF. The coefficient ¢y is given by

o = det[F'r, mg, mg)
0= det M ’

and we know that det M; > 0. We observe that by (8),
A
det[F1,my, m3] = l—g(det[l, my, mg] + deta, m2, m3)),

where 1 = (1,1,1)T and a = (ap,a1,a2)7 are the barycentric coordinates of p.
We claim that when a varies, the right-hand side reaches its maximum when

a = (1,0,0)T. To see this, we note that
detla, mg, m3] = ag D1 + a1(—D3) + a2 Ds.

In other words det[a, mg, m3] is a convex combination of the three numbers

D,, =Dy, D3, and is therefore bounded by the one that is largest in absolute
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value. From lemma 1 we know that this is D; which corresponds to ag = 1 and
a1 = az = 0. It is also easy to see that det[F'r, mq, m3) is positive for this value

of a. Then
ﬂdet[v,mz,mg]
CST10T detM;

where v = [2,1,1]7. To derive our final upper bound, we want to show that

Ap det[v, mg, m3] ﬁ
12det M - B’

(14)

where B is some linear combination of the areas Ag, A;, Az, and Ay.
If we expand the determinants by the first column and make use of the

subdeterminants, the inequality (14) can be written
(2D1 —Dy+ D3)B < 2(140 + A1+ Az + A4)D1 - (Ao + Al)Dz + (AO + A3)D3.

We introduce a new variable B; via the relation B = Ag + B;. This allows us

to eliminate Ag from the inequality,
(2D1 — Dy + D3)B1 < 2(A1 + Az + A4)D1 — A1 Dy + A3Ds.

Because of the symmetry between A; and Az in the construction, we must have
B; = b1(A1+ As) +ba A4 fore some constants by and by. From the last inequality
it is reasonable to choose by = 1. Some trial and error with Mathematica
indicates that by = 6/7 is a good choice, and one can check (most easily with
a tool like Mathematica) that the inequality holds for these values of the b;s.
In other words, inequality (14) holds when B = Ag + A4 + 6(A; + A3)/7, as
we wanted to show. These values for b; and by ensure positivity, but are not
optimal. Therefore the upper bound in equation 13 is not in general the smallest

upper bound.

8.8. Insertion of several nodes

One may consider insertion of many nodes according to strategy I as repeated
insertions of one node, or as fewer repeated insertions, but with more than one

node each time. When analysing stability, it turns out that it is advantageous

10
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to use the latter point of view and for example consider one step as insertion of
one node in each triangle.

Recall that the functions ¢ = {¢, | v € Ny} form a basis for the set Vo of
linear functions over the base triangulation Ag. After insertion of several nodes
according to strategy 1, but at most one in each triangle, we denote the new set
of nodes by N; and the new triangulation by A;. A natural basis for the set ¥V,
of linear functions over A;, is the set v = {7, | @ € N1} consisting of all the

linear B-splines in V;. A general function f; in V; is then given by

fi =A/Tb= Z Yeba, (15)

a€N,
where b = (b,) is a suitable coefficient vector. Since the B-splines satisfy
Yo{B) = bap for any o, B € Ni, we have fi(v;) = by,.
It is not difficult to see that an alternative basis for V; is given by the set
{®,v}, where ¥ = {1}, | v € N1\No}. This means that there are coefficients d
and w such that

f=7"b=¢"d+yTw=fo+g. (16)

The forward wavelet transform amounts to changing the representation of f;
from the basis 7y to the basis (¢,%), while the inverse wavelet transform corre-
sponds to the inverse change of basis.

We will now examine the wavelet transforms in some more detail by estab-
lishing the relation between the coefficients w, d and b. We first find a matrix
relation between the basis functions 1, ¢ and 7 and then use this to obtain
more direct relations between the coefficients.

It is useful to reorder the basis functions in v as {7y, vy}, Where

Yo = {m | 7(v) =1 for v € No},

the set of fine hat functions that are equal to one at an old node, and

AN = {mw | 7 (v) = 1 for v € N1\ No},

those that are equal to one at a new (inserted) node. We will establish the

11
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relation between the two bases {¢,v} and v by a two-step conversion via the
basis {¢,vn}, as done in [9].

We start by finding the relation between the two bases {¢, %} and {¢, vy}
From equation (3), we know that for each node v, € N1\ N inserted in a triangle

T, = (v, v, vg), the function 1, is given by
Yo, = Yo, — C; v, — C;¢"Uj = ki (17)

where the coefficients ¢, c7, ¢}, are found by solving the linear system (4) cor-
responding to insertion of node v,. We construct a matrix C, where each ele-
ment in column r is zero, except for the three entries cf, ¢}, cj in the positions
corresponding to the basis functions ¢.,, ¢y,, and ¢,,. Row ¢ of C contains
every nonzero c; used as a coefficient for ¢,,,v; € Ny in any expression for
a Yy,,vr € N1\No. The number of nonzero entries in row i is equal to the
number of neighboring triangles T € Ap to node v; in which a new node v, is

inserted. This allows us to express the relation between the two bases {¢, v}
and {¢a7N } by

[ 6w | = [ 67 4% | g —IC =[¢T—sTC+q% .

We now turn to the relation between the two bases {¢,vyy} and ~v. We
know that the basis functions in v, are just a subset of the total basis ~ for V.
The main challenge is therefore to express the coarse hat functions ¢ in terms
of the fine hat functions ¥ — this is possible since Vo C V;. Let us consider
one such basis function ¢, for some v; € Ny. This function can be expressed
by a linear combination of ~,, and the hat functions =, for v, € N1\Np, for
which there exists a triangle T' € A; such that v;,v, € T. Let L; be the set of
indices corresponding to these hat functions =y,,.. We recall that when a node
v, is inserted in a triangle T, = (v;,v;,vs) € Ag, it can be expressed as the
weighted sum v, = aJv; +ajv; + aj vk, where the weights are the barycentric
coordinates of v,.. Then it is well-known that

¢’u¢ =Yu; + Z af%w (18)

T€L;

12
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where a is the barycentric coordinate of vertex v; in the expression for v, over
T,

Equation 18 may be expressed in matrix form by introducing a matrix A
consisting of zeros and the barycentric coordinates a] of the inserted nodes
v, € N)\Np. At the appropriate positions in row r of A, we have the three
barycentric coordinates af of the new knot v, inserted in triangle Tr.. These
three entries are the only non-zero entries in row r, and they will always sum
to one. In each column i, we have one entry for each element of the set L;,
and entry r is the barycentric coordinate a] of the original knot v; € Ny in the
expression for the new knot v, € N1\ Np.

The matrix A allows us to write equation 18 in matrix form. If we augment
this relation with the new hat functions 7,, we obtain the desired relation

between the two bases {¢,vy} and v,

I 0

al =[ 15+ %4an% | 9

[ ™% | = [ 5.4 |
This in turn leads to the desired relation between the two bases {¢,} and «.

Lemma 3. The space V1 has the two bases {¢, 1} and ~ which are related by

I o| (1 -C

Allo 1 = [v5,7%] BR,

[67,97] = [v5,7%]

where v denotes the hat functions in V; with their apez at a node in Ny and
v n denotes the hat functions in V1 with their apez at a node in N1\ Ng. The

matrices C and A are described above.

Once we have the relation between the two bases it is straightforward to
derive a relation between the coefficients b and (d, w) of a function f; in the

two bases.
Lemma 4. Suppose f1 € V1 has the representation
fi=yTb=¢"d+9pTw
13
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in the two bases v and {¢,v}. Then the coefficients are related by

-

d I cl|r1 ol
Nl (20)
w 0 I —-A I||b
and the inverse relation
b° I ofl|I -c||d (o1)
b AI|llo 1| |wl]’

where b° are the coefficients of the coarse hat functions ~o with their apez at
the vertices in Ny and b are the coefficients of the hat functions N with their
apez at the new vertices N1\ Ny.

3.4. A local interpretation of the wavelet transforms

The two relations (20)—(21) constitute the wavelet transform and its inverse
— the core algorithms for computations with wavelets. For practical implemen-
tation on triangulations, however, it is usually not advisable to form these sparse
matrices. Instead, it is better to interpret (20)—(21) as operations involving a
vertex and its immediate neighbours.

Equation (20) corresponds to the decomposition of f; into the two parts
fo € Vo and go € Wy. It consists of two steps, namely the application of two
matrices. The first step is to compute the wavelet coefficients w = b" — Ab°.
The vector w is conveniently indexed by the nodes {v. € N1\ Ng}. We consider
one such node v,., which is inserted in a triangle T, € A formed by three nodes
v;, 5, Vk € Ng. Recall that the node v, can be expressed as the weighted sum

v, = ajv; +ajv; +a" v, where al,a”

7,05,y are the barycentric coordinates of v,..

The wavelet coefficient w,, is then given by
Wy, = by, — (a]by, + @by, +akby,), (22)

the difference between the function value b,, = fi(v,) and the value at v, of
the planar function that interpolates f; at the vertices of 1.

The second step in (20) is given by the relation d = b° + Cw. Recall
that the rows of the matrix C are indexed by the nodes in Ny (the old nodes),

14
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while the columns are indexed by the new nodes N; \ Ng. The cdefﬁcients d
are conveniently indexed by the old nodes v; € Ny, so in component form the
second step becomes
dy, = b + (Cw)y,.
The first term on the right is the contribution from the original function f; at
the old node v;. The second part corresponds to the row of C associated with
v; multiplied with the wavelet coefficients w. This row of C contains a nonzero
entry ¢l at a position v, € Ny \ Ny if the wavelet function ¥, is adjusted by
the term cf¢,,. Let L; be the set of such indices 7. We then have
dy, =by, + Y _ Jwy, . (23)
reL;
The local relations (22) and (23) and the similar version of the inverse trans-
form (21) provide a natural way to implement the wavelet transforms. On the
other hand, the matrix form is useful for studying the stability of the wavelets,

as we will see in the next section.

3.5. Analysis of stability

Let B be a nonsingular matrix. The condition number «(B) = ||B|[|B™||
expresses the conditioning of computing Bz, i.e., how much the relative per-
turbation of x is magnified when Bz is computed.

In the following we will measure the stability in the || - || matrix norm
induced by the £°° vector norm ||||g» = max; |z;]. This means that the stability
analysis provides bounds on the maximum perturbation error which is useful

when working with geometry.

Recall that the wavelet transform is given by

d I cl|I of]|b o |®°
= =R'B . (24)

w 0 I||-A I||b" b"
Our next task is to derive an upper bound on the condition number x(BR).
Since xK(BR) < x(B)x(R) and both | B|| = |B™Y|| and ||R|| = [R™"||, we only
need to derive upper bounds on || B|| and |[R)|. The norm of B and therefore

k(B) can be determined exactly.

15
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Lemma 5. The oo-norm and condition number of the matriz B are given by

(IB]l =2 and x(B) = 4.

PRrROOF. We see from (24) that ||B|| = |A|| + 1. Since a row of A contains
the barycentric coordinates of a point in the plane, we have ||A| = 1. Then

|Bll =2 and x(B) = ||B||* = 4.

We now want to derive a bound on x(R). Note that |R|| =1+ [|C||, so we
only need to determine a bound on ||C||. Since the entries of C are the solutions

of equations like (4), we will need to obtain an upper bound on these solutions.

Lemma 6. The matriz C satisfies the bound ||C|| < 7/6 and therefore k(R) <
(1+7/6)2.

PRrOOF. We focus on a general row of C associated with an old node v; € Ng.
The nonzero entries in this row stem from triangles that have been refined and
which have v; as one of their vertices: If the entry c] corresponding to the new
node v, is nonzero, this means that ¢} is the coeflicient of ¢,, in the expression
(17) for v, . From lemma 2 we know that ¢! satisfies a bound u, like (13), so
a bound on the norm of the row of C associated with v; is given by the sum
of all these upper bounds. Suppose further that there are a total of K refined

triangles that have v; as one of their vertices. We then need to show that
g K-l
5 > u>0. (25)
i=0

Now let Ty for k € {0,..., K — 1} be the triangles that have v; as a vertex,
listed sequentially, in counterclockwise order, with Ty = Tx and Tk = T3, as
illustrated in figure 4. For ¢ = 0... K — 1, the area of each triangle is given by
A; = A(T;). If we insert the upper bound from lemma 2, which we note may be

written as

k=0 Zgl'{;ol Aj — (Apr + Apyr)/7

the desired inequality (25) with this notation becomes
7 &= Ay

= >0
6 = Ef:ol Aj — (Apoy + Arp1)/7

16
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Figure 4: The triangles having v; as one vertex.

The left-hand side of the inequality can be rewritten in a series of steps,

K-1 K-1

7 Ae ) Ay,
6= i A oo Tsot Ay — (Ako1 + Ake) /T
5 ( 7/6 1 )
- Z Ak K-1, <E-1
Yico Ai Xico A — (k-1 + Aks1)/7
_ Kz‘: 4 ((7/6) (KL A) = (Akos + A /T) - 22! Aj>
(ZJK:_OI 45) (Z]I':ol Aj — (Ak-1 + Ag41)/7)
_ A < S0 Aj — (Aio1 + Arn) )
) 5 A4) (S5 — A+ A7)
The last expression is obviously nonnegative and hence the desired inequality

has been established.

The coefficient 7/6 follows from the upper bound from lemma 2 with this
strategy for the proof. But note that the last expression in the proof is strictly
positive as long as at least one of the areas Ay is non-zero, so the bound is not
sharp, and it may be possible to improve the bound.

Lemmas 5 and 6 can be summarised as an upper bound on the condition

17
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number of the wavelet transforms. We are also in a position to bound the
coefficients of a function in V; relative to one basis in terms of the coefficients

in the other basis.

Theorem 7. LetV; be a space of piecewise linear functions over a triangulation
T, refined from a space Vo over a coarser triangulation Ty, by strategy 1 above,
and let Wq be the corresponding wavelet space such that Vo & Wy = V. The
condition number k(BR) of the wavelet transforms between the two bases ¢,

and (¢g,WYg) for V1 is bounded by
x(BR) < 4(13/6)2.

For a function f € V, with the two representations vTb = ¢*d + YT w in the

two bases, the coefficients are bounded in terms of each other by

1Bl < lldll + (13/6)]w]| (26)
Id]l < (10/3)]bll (27)
lwl < 28] (28)

PRrooOF. The bound for the condition number follows from lemmas 5 and 6.
The inequalities for the coefficients are obtained from equations (20) and (21) by
taking norms and using the triangle inequality and the matrix norms computed

in this section.

Theorem 7 establishes the fact that the condition number is independent of
the geometry and topology of both the initial and the refined triangulation for
refinement strategy I. In the next section we verify that this is also the case for

strategy II.

4. Refinement strategy II

In our second refinement strategy, we divide an edge in two, and connect
opposite vertices, as shown in figure 5. The construction of the wavelets and

the analysis of stability is similar to strategy I, so the description is brief.
18
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278 We now consider a node p inserted on the edge (vo,v1) shared by the two
e triangles Ty = (vo, v1,v2) and T = (vg, v3,v1). The inserted node can then be

280 expressed by the convex combination
p=vg+ (1 —Nv;. (29)

We construct the corresponding wavelet ¥, by
3
Yp="vp— Zci¢vi'
=0
201 The coefficients are determined by requiring that 1, is orthogonal to the four

282 coarse hat functions {@y, }3_,. This leads to the linear system
Mz = Fiy, (30)
where, by (7)—(8), the matrix M is given by

[ tvobvo [ buodvs [ buebu, [ buodus
Joitvo [S0:00; [ bvibv. [ buidv,
[ tvatboo [ Suados [ buabu, [ buads
[ bvadve [ Svabvs [ bvadva [ busdus

My =

[ Ag+A;+Ag+Ag+ Ay Ag+A; Ap+As Aj+Ay §
6 12 12 12
Agt+A; Ag+ A+ A+ A5+ Ag Ag+Az Aj+Ag
12 6 12 12
= 3
Ag+Az Ag+Ag Ag+ A+ Azt Ag 0
12 12 6
Aj+Ag As+As 0 A;+ A+ As+Ag
L 12 12 6 .

the right-hand side is given by
T
FII = [f¢1)07 f¢1)1’7 f¢v;’)’ f¢v3’)’:|
1 T
= S[OrDM+4) @-NArA) 4 4l
and the vector of unknowns is
T
Zrr = [Co c1 C2 03] .

203 The value of A is determined by the convex combination (29), and the explicit

20« expressions for the integrals are found by the same procedure as in section 3.1.

19
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Figure 5: Overview of the areas involved in the equations for strategy 2.

20

DOl til publisert versjon / DOI to published version: 10.1016/j.matcom.2016.09.006



25 4.1. Bounds for the coefficients

286 As we did for the matrix M, we partition the matrix M by its columns
w2 as My = [my, my, m3,my]. By Cramer’s rule, the solution of (30) can be

288 expressed by
det[Fn,mg,m3,m4]
- det MII
o = det[my, Fyr, mg, my)
det M[[ ’
oy = det[ml,mz,Fu,m4]
det MII
o = det[ml,mg,mg,FH]'
det My

200 We want to derive a bound on these expressions and note first of all that lemma

(31)

200 1 also holds for My, such that D; > |D;| for i = 2,3,4. Due to symmetry, it
201 is sufficient to obtain a bound for one of ¢y and ¢;, and one for one of ¢ and

202 3. We start with ¢g.

200 Lemma 8. The coefficient cq is bounded by

Ao+ 4

< . 32
|CO|—A0+A1+2(A3+A4+A7)/3 ( )

294

206 PROOF. Expansion of the numerator and the denominator for ¢y show that
206 both have only positive terms, so ¢y > 0. The expansion also shows that the
207 maximum value for ¢y is obtained for A = 1. The rest of the proof is similar to

208 the proof of lemma 2.
200 A similar bound holds for ¢;. We now turn to the coefficients c, and cs.

;0 Lemma 9. The coefficients c; and cs are both bounded by

Ao -+ Bo
SN A+ 240+ 2B,

,  Jork=2,3, (33)

DO =

lex] < <

s where A; fori =1, 2, ..., N are the areas of the triangles adjacent to vy, with
32 Ag = Ay and An41 = A1, and By is the area of the neighboring triangle of Ag

s which does not have vy as a vertez, as illustrated in figure 77 for k = 2.

21
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Figure 6: Overview of the areas involved in the proof of lemma 9 for k = 2.
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PROOF. From lemma 1, we know that the denominator is positive. Expansion of
the numerator shows that it contains both positive and negative terms, and both
positive and negative terms depend on the value of A. We split the numerator
into N*()) containing the positive terms and N~ ()) the negative terms, such
that N(A) = N*t(A) + N~()), all being functions of A. Then

N N N V)
det M;r — det M — ~ det M;; ~— det My;’

since the upper and lower bounds are obtained when A = 1 in N* and N~

respectively. Finally, by direct expansion one can verify that the two inequalities
det M — 2N+(1) >0, detMj;r+ 2N_(1) >0
hold, and the result follows.

4.2. Analysis of stability for insertion of several nodes

The general description of the wavelet transforms in section 3.3 is also valid
for strategy II. We only need to replace the matrices A and C with matrices
appropriate for strategy II.

The matrix A for the second strategy is similar to the one for the first
strategy. Let v; be an old node in Ny and let E; denote the set of edges
emanating from v;. Then the old hat function ¢, may be expressed in terms
of the new hat function ~,, and the new hat functions which have their apexes
at the inserted nodes on the edges in E;,

=Y+ D G, (34)
v €E;

The vector-matrix version of this relation is

" =5 +45A (35)

The rows of A are indexed by the new nodes in N7 \ Np, while the columns
are indexed by the old nodes in Ny. The row associated with a new node
v, € N1\ Ny therefore contains at most two nonzero entries, namely this node’s

barycentric coordinates relative to the end points of the edge where the node

23
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was inserted. Let E; be the set of edges in the triangulation Ag having node
v; as one end node. In the column associated with the node w;, we have one
non-zero entry for each edge in F; which has been refined with a new node.
The matrix C is based on the relation
3
Yp = — Y Cidw, (36)
i=0

which in matrix-vector form becomes
T T T
P =" —¢°C.

Each column of C is associated with a new node v, € Ny \ Ny and contains
four non-zero entries, the coefficients cp, ¢i1, c2, ¢3 for the solution of the linear
system corresponding to the function 1, . A row of C is associated with an
old node v; € Ny and contains values of ¢g, ¢1, ¢z and c3 used as a coefficient
for the function ¢, in any expression like (36). The number of nonzero entries
in row 7 is equal to the number of refined edges emanating from the node v;.
This means that a node inserted on an edge going out from v; will only result
in one entry in row %, even though it will split two of the neighboring triangles.
So the number of row entries may be smaller than the number of neighboring
original triangles that are split after node insertions.

As for strategy I, the matrices B and R are given by

I 0 I —C
B= , R= . (37)
AT 0 I

To bound the condition number x(BR) for the second strategy, we note as
before that
«(BR) < x(B)x(R) = || B|*|| R||*.
It is therefore sufficient to bound the norms of ||B| and | R||. By the same
procedure as in lemma 5 we find that || B]| = 2 and x(B) = 4, since the elements
of each row of A sum to 1.
The norm of ||R|| is more complicated, since we have two different bounds

for the elements of C. In the row associated with wv;, the bound for a nonzero
24
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entry associated with a new node v, is given by lemma 8 if v, is inserted on an
edge emanating from v,., i.e., if v, € E;. If instead the new node v, is inserted
on an edge that is not in E;, the corresponding entry in the row is bounded by
lemma 9.

We can avoid this complication if we choose our refinement strategy such
that all entries in any given row of C are inserted in a similar way so that they
can be bounded by the same lemma. This means that for each node v; € Ny,
the new nodes inserted on the edges of triangles adjacent to v; are either all
inserted on edges in E;, or all inserted on edges not in E;. For now we just
assume that this is possible and bound the sum of the absolute values of the

entries in a row in each case.

Lemma 10. Let v; be a node in Ny with valence N and emanating edges E;,
suppose that no two adjacent edges in E; have been refined, and let ¢; denote
the row of C associated with v;. Then

3
leill: < 5
where || - ||1 denotes the vector 1-norm.

ProoOF. We first assume that N is even and that every other edge around v;
has been refined. Moreover, let T}, for k =0, 1, ..., N —1 be the triangles which
have v; as a vertex, ordered cyclically around v;, with 7o = Ty and T4 = T3,
as illustrated in figure 4, and denote the area of triangle T; by A; = A(T;). We

observe that the denominator in (32) may be rewritten as
2 2 1
Ao+ A1 + g(x‘ls + A4+ A7) = §(Ao + A1+ Az + Ag+ A7) + §(Ao + Ap).

Note that the first sum on the right contains the areas of all the triangles with

a vertex at vg. It is therefore sufficient to show that

N/2
3 A1 + Aog
5~ > 0. (38)
2 ; %Z;\;l Aj + 3 (Agk—1 + Az)
Since lecv=1 A = EkNﬁ(AZk—l + Aog), the left-hand side can be written

N/2 N/2
§Z/ Agk—1 + Az z/: Agk-1 + Az
2 2

N N
= =14 ko1 52— Aj + 5 (Aok—n + Aok)

25
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N/2

> (Azk-1 + Az) ( e ! ) =
3
2

k=1 25 521 A5+ 3(Agk—1 + Agg)

N/2 SN A+ Y Asken + Aoe)) — TN, 4;
Z(A% 1+ Agg) ( = ) NJ — | =
k=1 (5 Zj:l Aj + (A2 +A2k)) i=14;

= Aj+ (A A N A
Z(Azk 1+ Azi) ZJ = z(Aamn + Aze) 2=t
k=1 < Sy A+ Az 1+A2k)>ZJ 145

N/2
z/: (Agk—1 + Agg)? >0
2 ( EJ 1A +3(A2k 1+A2k))ZJ 14

the last inequality being obvious. If less than every other edge is refined, the

outer sum in (38) contains fewer terms which means that it is easier to satisfy
the inequality.

A similar argument applies if not all triangles around node v; are split. This
is the case if the valence of node v; is odd, but may occur also for even valence
if we insert new nodes on fewer than every second edge. In this case we let M
denote the number of triangles that are split, and we label these triangles as T
for k = 1,...,M, ordered cyclically around v;, such that for the kth inserted
node, Tox—1 and T are split. Note that since the two triangles that share a
refined edge are both split, the integer M must be even. In addition, we have
m triangles that are not split. These we label as T, for k=M +1,..., M +m,
and M +m = N, the valence of v;. Instead of inequality (38) we now obtain
from lemma 8 the following inequality that needs to be verified,

M2
_z/: Azk—1 + Aok

>
k=1 321 VA7 + 3300 Anrg + 5(Ask-1 + Azk)

In order to show that this equation holds, we observe that

(39)

N W

M/2

3 _ Z Agk-1+ A2k

2 4 %E;\L A+ 250 Apraj + 3(Aak-1 + Azk)
3 & Agp1 + Agg >0

2 = %Efil Aj+ L(Agk—1 + Azi) ’

where the last inequality follows from the proof of the first case.
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Lemma 11. Let E; be the edges emanating from the vertex vo € Ny, and sup-
pose that N of the triangles which have vy as a verter are refined along an edge
which is not in E;. Then the entries in the row ¢; of C associated with v; is
bounded by
el < X
11 > 2 .
PROOF. We know that there will be N nonzero entries in the row associated

with v;. Lemma 9 tells us that each of these are bounded by 1/2, and from this

the result follows.

It may be possible to improve the last bound such that it becomes indepen-
dent of N, but we have not been able to do so. Therefore, when strategy II is
used, our bound for the norm ||C|| depends on how the strategy is applied. We
will analyse our particular combination of the strategies in the next section, but

end with a general result.

Theorem 12. Let V; be a space of piecewise linear functions over a triangula-
tion T1, refined from a space Vo over a coarser triangulation Ty, by strategy II,
and suppose that for each node in Ny, the new nodes inserted on the edges of
triangles adjacent to v; are either all inserted on edges in E;, or all inserted
on edges not in E;, where E; denotes the set of edges emanating from v;. Let
Wy be the corresponding wavelet space such that Vo ® Wo = V,. The condition
number k(BR) of the wavelet transforms between the two bases ¢, and (g, Yy)
for V1 is bounded by

k(BR) < max(25,4 + 4K + K?),

where K denotes the mazimum number of triangles in Ag with one common
vertez. For a function f € V, with the two representations vTb = ¢Td + ¥ Tw

in the two bases, the coefficients are bounded in terms of each other by

ol < lldll + (1 + )]l (40)

llall < (1 + 2a)||b]| (41)

flwll < 28] (42)
27
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where o = max(3/2, K/2).

PROOF. The bound for ||C|] is given by the maximum of the two bounds from
the lemmas 10 and 11, and the bound for the condition number follows. The

inequalities for b, d and w follow from equations (20) and (21).

The bounds in this section apply when either only strategy I or only strat-
egy II is used for a one-level wavelet decomposition. For a multi-level decom-
position it is possible to avoid the dependence on the topology in Theorem 12

by applying strategy II appropriately.

5. Multilevel decomposition combining strategies I and II

There are two types of approaches for construction of a hierarchy of trian-
gulations. One is to start with a fine triangulation and remove nodes and edges
to obtain the sparser triangulations in the hierarchy. Another approach is to
start with a sparse triangulation and create the finer triangulations by insertion
of nodes and edges. We consider the latter approach, and the flexibility of our
node insertion strategies allow us to insert new nodes in areas with large errors
and keep a sparse triangulation in other areas.

In this section we give a simple example of how the two node insertion
techniques may be combined to construct a highly nonuniform wavelet decom-
position over several levels. Once the hierarchy of triangulations has been con-
structed, we may determine the wavelet spaces as described above. Because of
the stability results, we know that nodes may be inserted at arbitrary positions
without leading to serious numerical problems.

One may construct a hierarchy of triangulations using strategy I only. This
has the disadvantage that no edge will ever be split, and after some iterations
the triangulations are likely to contain a number of triangles with very small
angles. Although this does not adversely affect the stability of the wavelet
transforms, it may be disadvantageous for other reasons. In order to avoid this,

we combine strategy I with an edge dividing strategy such as strategy II. Recall
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Figure 7: Combination of node insertion strategies 1 and 2.

that the condition number of the wavelet transform for strategy IT has not been
bounded independently of the number of node insertions around a node, see
theorem 12, but it turns out that by combining strategies I and II we can avoid
this dependence as we now explain.

Suppose that a new node v has been inserted in a triangle by strategy I. We
then use strategy 11 to insert one new node on each edge of the original triangle
in which v was inserted, as shown in figure 7. This means that all the original
triangle edges are split into two, as is also the case for the three neighbouring
triangles which share the three edges. Since v is surrounded by exactly three
triangles, the bound for ||C|| in theorem 12 will become 3/2 when strategy II is
combined with strategy I in this way.

Let Ay be some triangulation that has been refined with strategy I, and Ny
the nodes in this triangulation. We denote the set of edges in the triangulation
A having node v; as one end node by E;. The combination of strategies I and
IT described above ensures that for each node v; € Nk, the new nodes inserted
on the edges of neighboring triangles are either only inserted on edges in E; or
only inserted on edges not in E;. This means that for each row in matrix C, all
elements are bounded as in Lemma 10 or Lemma 11.

There will be a conflict if in strategy I we skip node insertion in only one

29
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Figure 8: Combination of node insertion strategies I and II.

triangle when progressing through the triangles surrounding a node. This is
because this triangle will then be divided twice in strategy II. This can be
avoided for example by choosing to divide the longest edge of the empty triangle.
An example of node insertion where this is done, is shown in figure 8. We see
that this results in some triangles being split into four or five new triangles as
opposed to the normal six new triangles after refinement by both strategies. An
alternative would be to insert a new node according to strategy I in these empty
triangles before continuing with strategy II.

We emphasise that the nested triangulations obtained through this strategy
will normally not be considered nice triangulations, since some triangles may
have very small angles and some vertices many neighbouring triangles. How-
ever these bad triangulations demonstrate well that our wavelets are stable,

independently of the geometry of the triangulations.

5.1. Multilevel stability

By combining strategies I and II as indicated above, we obtain a hierarchy of

triangulations, and it is then of interest to consider the stability of the wavelet
30
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transforms over all levels. So we consider the situation where we have a nested
set of triangulations Ag C A; C --- C Ak, constructed alternately by strate-
gies I and 11, and corresponding nested linear spaces Vo C V; C -+ C V. The
final refinement from Ag_; to Ak is done according to strategy II, meaning
that K is an even number. We can then construct wavelets in the standard
wavelet tradition by applying the above recipes, such that each space V; may
be decomposed as V; = V;_; ® W,_;. By iterating this, the finest space Vg

may be decomposed as
Ve =VooWod W& - - & Wg_;. (43)

If we denote the basis of hat functions for V; by ¢,, and the wavelet basis
for W; by 1, the decomposition (43) shows that V has the two bases ¢y
and (¢g, 0,1, .-, ¥x_1). The wavelet transforms convert a given function
in Vg between representations in these two bases, and stability means that
the condition numbers of these transforms should be bounded. This analysis is
similar to the one in [9].

Since both ¢ and (¢g, ¥q, -+ , ¥ x_1) are bases for Vi, we may represent

a function f in Vg by

K-1
f=okdx=¢ido+ Y plw;, (44)
=0

where do and dg are the coefficients of the hat functions in ¢, and ¢ respec-
tively, and w; are the wavelet coefficients of the basis functions in W;. It is

useful to collect all the coefficients on the right in (44) in a long vector
d= (do,’lﬂo,-” ,'wK_l). (45)
The following theorem shows that the wavelet basis is stable in the L.-norm.

Theorem 13. Let f be a function in Vi given by (44), and let d denote the
vector of coefficients given by (45). Then

3\ X/ K2t r1s 5
(%) tansustaol+ Y (hwnl+ Swasal ).

i=0
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ProoF. Note first of all that ||f|| = ||dk||. The last inequality is therefore
obtained by repeated application of inequalities (27) and (41) alternately. When
(27) is applied, the factor 3/10 is gained, while when (41) is applied the factor
1/4 is gained, i.e., a factor of 3/40 each time both inequalities have been applied.
The first inequality follows from finding the smallest lower bound for dx by
repeated use of the inequalities (27) and (41) alternately, and (28) and (42)

alternately.

A standard consequence of Theorem 13 is that if the coefficients of f are
perturbed, the relative error in f can be bounded by the perturbations in the
coefficients. Let the perturbed function be f= d)};{iK = ¢g‘30 + EiKzal 'd),ruii.

Then, if f is nonzero,

If = Il _ (40\*/? |ido — o
7 S(-:s) Tl

K/2—1 . .
N (@)K/z /z: (E lwai — | + 5 |lwait — w2i+1“) (46)
5) 2 \& qar ‘"2 g )

where § = (do, wo, ... wWk_1).

A somewhat disappointing feature of both the estimate in Theorem 13 and
the one in (46) is the presence of the factor (40/3)%X/2. This factor emerges
because we repeatedly apply the estimates (26)—(28) and (40)—(42), a total of
K/2 times.

For classical wavelets, the projection from Vi to Vi_; is by orthogonal pro-
jection in the L?-norm. One advantage of this is that successive projection from
Vi to Vi_1 and then to Vi_2 is equivalent to direct projection from Vi to
Vi—2. This has the consequence that when deriving multi-level stability esti-
mates analogous to that in Theorem 13, we do not need to repeatedly apply
one-level estimates, but we may estimate coeflicients on level ¢ directly in terms
of coefficients on level j and thereby avoid the exponential growth.

It is worth pointing out that the estimates in Theorem 13 are not best possi-
ble. Indeed, the numerical examples below indicate that the condition numbers

corresponding to the wavelets constructed here do not grow exponentially with
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the number of levels.

6. Numerical examples

We include two numerical examples to illustrate the behaviour of wavelet
decomposition with the wavelets constructed here. The examples confirm that
our wavelet transforms are stable, even for triangulations with small angles
and vertices with a relatively large number of neighbouring triangles, i.e. high
valence. For most purposes, such triangulations are viewed as bad and are tried
to be avoided.

We use a dataset of a mug that was obtained using a laser scanner. This
dataset consists of points in the zy-plane, with a depth value z at each point.
Based on the dataset, we create a sparse initial triangulation. Through refine-
ments with strategies I and II alternately, as described in section 5, we establish
a hierarchy of nested triangulations. We start with strategy I and end with
strategy II. We have applied the strategies such that they only refine the inte-
rior of the triangles and edges, so the boundary of the initial triangulation will
remain unchanged.

When refining a triangle with strategy I, we have chosen to insert the new
node at the position corresponding to the data point that has the z-value that
deviates the most from the plane interpolating the dataset at the vertices of the
triangle. In the first example we have added the restriction that the barycentric
coordinates of the new point should be greater than 0.3. This is to avoid triangles
with extremely small angles. In the second example we accept any nonnegative
values of the barycentric coordinates for the new point.

In strategy II a given triangulation is refined by inserting new nodes on
edges. However, only in rare cases will the original dataset contain points that
lie exactly on an existing edge. To circumvent this problem, we augment our
dataset with new, artificial data points. We have chosen to insert the new nodes
such that the two new edges that connect the two vertices opposite the edge,

form a straight line. However, in some cases the straight line between these
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511

527

528

Level 1C oo

Strategy 1 | Strategy 2
0| 0.592904
1 0.652707
2 0.562035
3 0.723849

Table 1: The norm of matrix C for barycentric coordinates greater than 0.3.

two vertices will intersect the edge close to, or beyond, an end point. In such
situations we insert a node, somewhat arbitrarily, at a relative distance of 10
% from the end node that is closest to the intersection. The corresponding z-
value is determined from the plane interpolating the three nearest points in the
dataset.

After the desired number K of refinements is reached, we use the piecewise
linear interpolant fx € Vg over the finest triangulation as the starting point
for the wavelet decompositions. In the two examples reported here, we have
used K = 4. We then compute the wavelet coefficients successively. The results
are shown in figures 9 and 10 and tables 1 and 2, respectively. As expected, all
computed functions behave nicely.

We emphasise that this construction of nested triangulations is merely a
tool for demonstrating the robustness of our wavelet construction — for most

practical applications more sophisticated constructions would be necessary.

7. Conclusion

We have shown how to construct piecewise linear, wavelet-like functions
over a hierarchy of triangulations. The hierarchy is constructed by refinement
according to one of two refinement strategies described in this paper, or a com-
bination of these. The first refinement strategy inserts at most one new node

in the interior of each triangle, while the second strategy divides edges into two
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541

542

543

544

545

546

547

548

Level [1C oo

Strategy 1 | Strategy 2
0 0.698621
1 0.758566
2 0.832565
3 0.842255

Table 2: The norm of matrix C for barycentric coordinates greater than 0.

pieces. We have analyzed the stability of the wavelet-like functions for each of
these refinement strategies. For the first strategy, the construction is shown to
be stable independently of the topology and the geometry of the initial trian-
gulation and the refinement. For the second strategy, we have shown that the
construction is stable independently of the geometry of the initial triangulation
and the refinement, but our estimates do depend on the topology.

We have also analyzed a refinement strategy, which combines the two basic
strategies in such a way that the stability estimates become completely indepen-
dent of the triangulations. We have included two examples which demonstrate
the performance of this refinement strategy.

This work has some obvious generalizations and extensions. There are many
other ways to refine triangles than the ones we have considered here, all of
which would require a stability analysis. There are also possible improvements
of the work in this paper. The most obvious improvement is to remove the
dependence on N, i.e., the triangulation, in Lemma 11. A seemingly more
challenging problem is to confirm the behaviour in the numerical examples and
estimate directly the conditioning of projection form a space V; to an arbitrary

coarser space V;, without going via the intermediate spaces.

References

[1] C. Chui, An Introduction to Wavelets, Academic Press, Boston, 1992.

35

DOl til publisert versjon / DOI to published version: 10.1016/j.matcom.2016.09.006



549

551

552

554

557

567

[2] A. Cohen, I. Daubechies, J.-C. Feauveau, Biorthogonal bases of compactly
supported wavelets, Comm. on Pure and Appl. Math. 45 (5) (1992) 485-
560.

[3] W. Dahmen, A. Kunoth, K. Urban, Biorthogonal spline wavelets on the
interval—stability and moment conditions, Appl. Comput. Harmonic Anal.

3 (1999) 132-196.

[4] 1. Daubechies, Ten Lectures on Wavelets, Soc. for Ind. and Appl. Math.,
1992.

[5] I. Daubechies, I. Guskov, P. Schréder, W. Sweldens, Wavelets on irregular
point sets, Phil. Trans. R. Soc. Lond. A 357 (1999) 2397 2413.

[6] M. Floater, E. Quak, Linear independence and stability of piecewise linear
prewavelets on arbitrary triangulations, Soc. for Ind and Appl. Math. J. on

Numer. Anal. 38 (1) (2000) 58-79.

7] D. Hardin, D. Hong, Construction of wavelets and prewavelets over trian-
g p

gulations, J. of Comput. and Appl. Math. 155 (2003) 91-109.

[8] T. Lyche, K. Mgrken, E. Quak, Theory and algorithms for non-uniform
spline wavelets, Multivar. Approx. and Appl. (2001) 152-187.

[9] T.Lyche, K. Mgrken, F. Pelosi, Stable, linear spline wavelets on nonuniform
knots with vanishing moments, Comput. Aided Geom. Des. 26 (2) (2010)
203-216.

[10] R. Stevenson, Stable three-point wavelet bases on general meshes, Nu-

merische Mathematik 80 (1998) 131-158.

[11] R. Stevenson, Locally supported, piecewise polynomial biorthogonal

wavelets on nonuniform meshes, Constr. Approx. 19 (2003) 477-508.

[12] W. Sweldens, P. Schréder, Building your own wavelets at home, in:
Wavelets in Computer Graphics, ACM SIGGRAPH Course notes, 1996,
pp. 15-87.

36

DOl til publisert versjon / DOI to published version: 10.1016/j.matcom.2016.09.006



R

"CSON

NS
W
»%\ S

==
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Figure 9: Wavelet decomposition of a mug. Here we require the barycentric coordinates to be

greater than 0.3 in strategy 1.
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(d) mugW1

(f) mugW2

(h) mugW3

(i) mugV4

Figure 10: Wavelet decomposition of a mug on a triangulation, allowing any barycentric

coordinates in strategy 1.
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