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Abstract 

In this paper we construct linear, uniformly stable, wavelet-like functions on 

arbitrary triangulations. As opposed to standard wavelets, only local orthogo­

nality is required for the wavelet-like functions. Nested triangulations are ob­

tained through refinement by two standard strategies, in which no regularity 

is required. One strategy inserts a new node at an arbitrary position inside 

a triangle and then splits the triangle into three smaller triangles. The other 

strategy splits two neighboring triangles into four smaller triangles by insert­

ing a new node somewhere on the edge between the triangles. In other words, 

non-uniform refinement is allowed in both strategies. The refinement results 

in nested spaces of piecewise linear functions. The detail-, or wavelet-spaces, 

are made to satisfy certain orthogonality conditions which locally correspond to 

vanishing linear moments. It turns out that this construction is uniformly sta­

ble in the £ 00 norm, independently of the geometry of the original triangulation 

and the refinements. 
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1. Introduction 

Wavelets have become a popular tool in many areas of mathematics and 

• science. Classical wavelets were defined on regular uniform grids over the whole 
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4 real line and were required to satisfy strong orthogonality conditions [4]. Early 

5 extensions relaxed the orthogonality conditions and provided simple restrictions 

• to intervals, cf, [2]. The use of spline wavelets provided better treatment of 

7 boundary conditions on intervals, as well as a natural construction of wavelets 

8 on non-uniform grids, as shown in [1], [3] and [8]. 

• Any univariate construction, including wavelets, can be extended to the mul-

10 tivariate setting by the standard tensor product construction. Various kinds of 

11 wavelets have also been constructed on triangulations, but to our knowledge, 

12 the most general setting for these constructions is a non-uniform base triangu­

u lation with some kind of uniform refinement rule, see e.g. (5], [6], [7], (10], and 

14 (11]. 

15 Construction of wavelets over irregular grids raises an additional issue, namely 

10 whether the construction is stable independently of the grid geometry. It was 

17 recently shown in (9] that this is indeed the case for univariate, linear wavelets 

19 on irregular grids with vanishing moments when the stability is measured in the 

10 uniform norm. 

20 The purpose of the present paper is to generalize the results in (9] to linear 

21 wavelets over general triangulations. Linear wavelets that are locally orthogonal 

22 to the original basis of hat functions are constructed. We use two standard, but 

.. not widely used, refinement rules, which both allow non-uniform refinement. 

24 These wavelets are shown to be uniformly stable, independently of the topology 

25 and geometry of both the original triangulation and the refinements. As in 

20 (9] we measure stability in the uniform norm. We limit our studies to general 

27 triangulations that can be projected onto a plane. 

29 In section 2 we give a brief overview of the construction. In section 3 we 

20 discuss the first refinement strategy in detail, including stability results, and in 

30 section 4 we discuss the second strategy. In section 5 we then combine these 

.. results and consider iterated refinement with a combination of the two strategies. 

32 We end with some examples in section 6 and conclude in section 7. 
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33 2. An overview of the wavelet construction 

34 Let N be a finite set of points in lll2 , usually referred to as nodes. Any set 

35 of three nodes forms a triangle, and a triangulation ~ over N is a collection of 

3e triangles with the property that two triangles in ~ are either disjunct, or have a 

37 vertex or edge in common. We will refer to the number of edges emanating from 

38 a node as its valence. For each node v E N we construct the linear B-spline 

30 (hat function) <!>v with the property that for any two nodes a, /3 E N we have 

40 <Po. (/3) = Oo.fJ. 

41 We start with an arbitrary base triangulation ~o defined over an initial set 

42 N0 of nodes. We then refine the base triangulation through node insertions, 

43 where each node is inserted according to one of two alternative strategies. The 

" first strategy is to insert a new node pin the interior of a triangle T = ( v 0 , v 1 , v 2 ) 

45 and split the triangle into three smaller triangles, as shown in figure l(a). The 

46 inserted point p can then be expressed as a convex combination of Vo, v1 and 

47 V2 by p = aovo + a1V1 + a2v2, where a= (ao, a1, a2) contains the barycentric 

48 coordinates of the point p, i.e., they satisfy ai 2 0 and I:i=o ai = 1. For p to 

40 be inserted inside the triangle, we require O < ai < 1. The second strategy for 

50 node insertion is to insert the new node p along an edge e = ( vo, v1) and divide 

n each of the two triangles sharing the edge into two new triangles, as shown in 

52 figure l(b). The new node can now be expressed asp= .Xv0 + (1- .X)v1 , where 

n O < A < 1. Regardless of the insertion strategy, we can construct a new hat 

u function O'p, such that O'p(P) = 1 and O'p(v) = 0 for all nodes v E N 0 • In either 

ss case we denote the new set of nodes No U {p} by N 1 and the new triangulation 

so by ~1-

57 If we allow one or more ai E {O, 1} or A E {0, 1} for an inserted knot p, the 

se corresponding hat function O'p will be discontinuous. For simplicity we will not 

so discuss these cases in this paper. 

We will now give an overview of our wavelet construction for node insertion 

strategy 1. Strategy 2 is treated later in a similar way. The set </> = { <f>v I 
v E No} forms a basis for the space Vo = V(~o) of continuous functions that 
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"O 

(a) Insertion of a node inside a triangle. (b) Node insertion on an edge. 

Figure 1: The two strategies for refining a triangulation. 

are linear on each triangle in ~o- Similarly, the set 1 = bv I v E Ni} forms 

a basis for the refined space V1, and it is well-known that Vo ~ V1. The 

natural generalisation of the construction in [9] is to construct an alternative 

basis { ¢, i,bp} for V 1 with the property that 

f i,bpg = 0, for g = 1,x,y, J.[(2 

60 Here i,bp 'Yp - I::=o c;</Jv;, where v; are the vertices of the triangle that 

u contains p, and (c;)T=o are certain coefficients (c;)T=o to be determined. These 

62 equations constitute a linear system of equations for determining the unknown 

63 coefficients, but unfortunately, it turns out that this construction is not stable 

6• independently of the geometry. More specifically, there exist triangulations such 

6s that the resulting linear system of equations is singular. An example of such a 

60 triangulation is shown in figure 2 . 

• , We want to construct an alternative basis { ¢, 1f'p} for V 1 with the property 

•• that the function 1Pp satisfies the orthogonality condition 

(1) 
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Figure 2: An example of a triangulation that causes problems if we require vanishing moments 

with 1, x, and y when inserting the node p. The left figure shows the topology of the 

triangulation, while the right figure shows a position of the node v3 for which the associated 

linear system of equations is singular. Note that the topology in both triangulations is the 

same. In the right triangulation, some of the triangles are deformed, but they have not 

collapsed. 

•• for all v E N for which ef>v is not identically equal to zero on the support of <Yp, 

70 i.e., for all v in the ring around p. For strategy I there will be three such hat 

71 functions, based at the three vertices surrounding pin figure l(a). For strategy 

72 II we see from figure l(b) that there will be four such functions. We construct 

73 'lpp by finding constants Ci such that the function 

n-1 

1Pp = 'Yp - L Cief>vi 

i=O 

(2) 

74 satisfies the orthogonality conditions, with n = 3 for the first strategy and n = 4 

7s for the second. This is a standard way to adjust wavelets, see e.g. [12]. 

'" In practice, the sets of nodes No and N1 , as well as the basis functions </> 

77 and 1 , will necessarily be listed in some order. However, the particular ordering 

78 employed is not essential. 

'" 3. Node insertion according to strategy I 

80 3.1. Defining equations 

u A triangle To = (Vo, V1, v2) is refined by inserting a node p as shown in 

92 figure l(a). We want to construct the corresponding wavelet function 1Pp given 
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83 by (2) such that it satisfies the three conditions (1) with v = vi for i = 0, 1, 2. 

"' In other words 

(3) 

and we determine the three coefficients co, c1 and c2 by solving the linear system 

[ 

f c/Jvo c/Jvo f c/Jvo c/Jv, 

f c/Jv, c/Jvo f c/Jv, c/Jv, 

f c/Jv2¢vo f c/Jv2c/Jv, 

f ¢voc/Jv2 l [ CO l [ f ¢vo1P l 
J c/Jv,c/Jv2 C1 = J c/Jv,1p · 

f ¢v2 ¢v2 C2 f ¢v2 1p 

8s For reference, we let this linear system be denoted by 

(4) 

80 The integrals in M 1 can be expressed explicitly, since the functions c/Jv and 

87 IP are linear B-splines. As shown in [6], the integral fr f g for two linear func-

88 tions f and g over a triangle T = {va,v1,v2} can be expressed as 

(5) 

80 where A(T) is the area of T and 

hr(f,g) = fo9o + fig1 + h92 + Uo +Ji+ h)(go + 91 + 92). (6) 

•• The values Ji and 9i for i = 0, 1, 2 are the values of the functions f and g 

01 evaluated at the vertex vi of T. 

02 Let Sa denote the support of c/Ja and Sa/3 = San S13 for nodes a, /3 E N. 

.. Also let A(Sa) denote the area of Sa. Then the integrals can be expressed by 

J {
A(Sa)/6, 

c/Jac/J{3 = 
A(Sa13)/l2, 

a= /3; 
(7) 

Q i- /3; 

•• and 

J ¢vi IP= 1
1
2A(Sp)(ai + 1), (8) 

•• where ai is the barycentric coordinate of vi in the expression for node p, 

(9) 
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o• and Sp is the support of "/p-

01 We now divide the total support of the hat functions in the system as shown 

oa in figure 3. For i = 0, 1, 2, 3, Ti denotes a triangle, while for i = 4, 5, 6, Ti denotes 

oo a set of triangles. More explicitly, T4 denotes all triangles with a common vertex 

100 at v 0 , except for the three explicitly indicated triangles To, T1 and T3, and 

101 similarly for T5 and T6 . For i = 0 ... 6, the area of Ti is denoted by Ai = A(Ti), 

102 From the formulas (7) and (8) we then see that the matrix Mr and the vector 

10• Fr can be expressed by 

[

2(Ao + A1 + A3 + A4) 

Mr= /2 A0 +A1 

Ao+A3 

104 and 

Ao +A1 

2(Ao + A1 + A2 + A5) 

Ao+A2 

Ao+A3 l 
A 0 +A2 

2(Ao + A2 + A3 + A5) 
(10) 

(11) 

10• These are the basic equations that govern the construction of the wavelet func-

10• tions. 

101 3. 2. Bounding the coefficients 

10• When only one new node is inserted, the challenge in constructing wavelets 

100 that are uniformly stable is to bound the coefficients x = (co, c1 , c2 ) indepen-

110 dently of the triangulation and its refinement. We first record some properties 

111 of the matrix Mr. 

112 Lemma 1. The determinant of Mr is nonnegative, and det Mr > 0 if the 

m triangle To that is refined has nonzero area. Let Mi denote the submatrix of 

m Mr obtained by removing column 1 and row i, and set Di = detMi. Then 

m D1 > ID2I and D1 > ID3I. 

PROOF. The B-splines ef>i are linearly independent provided that the triangle 

To that is being refined has nonzero area, and it is well-known that a Gram 
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Figure 3: Overview of the regions involved in the equations for strategy I. Nate that T4 

denotes the region defined by all the triangles with a common vertex at vo, except for the 

three explicitly indicated triangles To, T1 and T3. The same applies to Ts and T6. The area 

of region Tk is denoted by Ak. 
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matrix of linearly independent functions has a positive determinant. To derive 

the relations between the sub-determinants one may for example check that all 

four inequalities 

D1 + D2 > 0, D1 + D3 > 0 

11e hold - this follows quite easily by simply expanding the determinants. 

m To bound the coefficients, we partition the matrix MI by its columns as 

11a MI = [m1, m2, m3] (note that we include the factor 1/12 in each of the 

110 columns). By Cramer's rule, the solution of (4) is then given by 

det[F, m2, m3] 
co= detMr ' 

det[m1,F,m3] 
ci = detMr ' 

det[m1, m2, F] 
c2 = detMr · (12) 

120 Because of symmetry, it is sufficient to obtain a bound for one of the coefficients, 

121 say CQ. 

122 Lemma 2. The coefficient c0 is bounded by 

Ao 
lcol :S: Ao+ A4 + 6(A1 + A3)/7 

12, where the A;s denote the areas of the corresponding triangles in figure 3. 

PROOF. The coefficient Co is given by 

det[Fr,m2,m3] 
co= detMr ' 

and we know that detMr > 0. We observe that by (8), 

det[Fr,m2,m3] = 1i (det[l,m2,m3] +det[a,m2,m3l), 

(13) 

where 1 = (1, 1, l)T and a= (a0 , a1, a2 )T are the barycentric coordinates of p. 

We claim that when a varies, the right-hand side reaches its maximum when 

a= (1, 0, O)T. To see this, we note that 

In other words det[a, m2, m3] is a convex combination of the three numbers 

Di, -D2, D3, and is therefore bounded by the one that is largest in absolute 
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value. From lemma 1 we know that this is D1 which corresponds to a0 = 1 and 

a1 = a2 = 0. It is also easy to see that det[Fr, m2, ma] is positive for this value 

of a. Then 
Ao det[v, m2, ma] 

rn < - ---'------'-
'"'\} - 12 detMr ' 

124 where v = [2, 1, l]T. To derive our final upper bound, we want to show that 

Aodet[v,m2,ma] Ao 
-------<-

12detMr - B' 
(14) 

m where Bis some linear combination of the areas Ao, A1, Aa, and A4. 

If we expand the determinants by the first column and make use of the 

subdeterminants, the inequality (14) can be written 

We introduce a new variable B1 via the relation B =Ao+ B1. This allows us 

to eliminate Ao from the inequality, 

120 Because of the symmetry between A1 and Aa in the construction, we must have 

127 B1 = b1(A1 +Aa)+b2A4 fore some constants b1 and b2. From the last inequality 

12a it is reasonable to choose b2 = 1. Some trial and error with Mathematica 

m indicates that b1 = 6/7 is a good choice, and one can check (most easily with 

130 a tool like Mathematica) that the inequality holds for these values of the bis. 

m In other words, inequality (14) holds when B = Ao + A4 + 6(A1 + Aa)/7, as 

m we wanted to show. These values for b1 and b2 ensure positivity, but are not 

m optimal. Therefore the upper bound in equation 13 is not in general the smallest 

13• upper bound. 

m 3.3. Insertion of several nodes 

m One may consider insertion of many nodes according to strategy I as repeated 

m insertions of one node, or as fewer repeated insertions, but with more than one 

m node each time. When analysing stability, it turns out that it is advantageous 
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m to use the latter point of view and for example consider one step as insertion of 

140 one node in each triangle. 

141 Recall that the functions </) = { <Pv I v E No} form a basis for the set Vo of 

142 linear functions over the base triangulation D.0 • After insertion of several nodes 

143 according to strategy 1, but at most one in each triangle, we denote the new set 

144 of nodes by N1 and the new triangulation by D.1. A natural basis for the set V 1 

14• of linear functions over D.1 , is the set 1 = ba I a E Ni} consisting of all the 

1"" linear B-splines in V 1 . A general function Ji in V 1 is then given by 

Ji =,Tb= I: "faba, 
aEN, 

(15) 

147 where b = (ba) is a suitable coefficient vector. Since the B-splines satisfy 

148 "fa(/3) = 6af3 for any a,/3 E Ni, we have fi(vi) = bv,· 

uo It is not difficult to see that an alternative basis for V 1 is given by the set 

.. o {</),'Ip}, where 'lj, = Nv I v E N1 \No}. This means that there are coefficients d 

m and w such that 

(16) 

m The forward wavelet transform amounts to changing the representation of Ji 

m from the basis I to the basis ( </), 'lj,), while the inverse wavelet transform corre­

m sponds to the inverse change of basis. 

1•• We will now examine the wavelet transforms in some more detail by estab­

... lishing the relation between the coefficients w, d and b. We first find a matrix 

m relation between the basis functions 'lj,, </) and I and then use this to obtain 

1sa more direct relations between the coefficients. 

It is useful to reorder the basis functions in I as {,o,"YN}, where 

"Yo= bv I 'Yv(v) = 1 for v E No}, 

the set of fine hat functions that are equal to one at an old node, and 

"YN = bv I 'Yv(v) = l for v E N1 \No}, 

1so those that are equal to one at a new (inserted) node. We will establish the 
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100 relation between the two bases { <p, 'If,} and 'Y by a two-step conversion via the 

101 basis {¢,'YN}, as done in [9]. 

1e2 We start by finding the relation between the two bases { <p, 'If,} and { <p, 'Y N}. 

m From equation (3), we know that for each node Vr E N1 \No inserted in a triangle 

'"' Tr = ( vi, Vj, vk), the function 1/Jv, is given by 

(17) 

where the coefficients c;-, c;, c;;; are found by solving the linear system ( 4) cor­

responding to insertion of node Vr. We construct a matrix C, where each ele­

ment in column r is zero, except for the three entries c;-, c;, c;;; in the positions 

corresponding to the basis functions ef>vi, ef>v, , and ef>v,. Row i of C contains 

every nonzero c;- used as a coefficient for ef>vi, vi E N 0 in any expression for 

a 1Pvr, Vr E N1 \No. The number of nonzero entries in row i is equal to the 

number of neighboring triangles T E ~o to node Vi in which a new node Vr is 

inserted. This allows us to express the relation between the two bases { <p, 'If,} 

and { <p, 'YN} by 

[ q,T, ,pT l ~ [ q,T, -yf. l [ ; -: l ~ [ q,T, -ef,T C + -y'f,, ] . 

10s We now turn to the relation between the two bases { <p, 'Y N} and 'Y. We 

100 know that the basis functions in 'Y N are just a subset of the total basis 'Y for V l · 

107 The main challenge is therefore to express the coarse hat functions <p in terms 

10a of the fine hat functions 'Y - this is possible since VO ~ V 1 . Let us consider 

100 one such basis function ef>vi for some v; E No. This function can be expressed 

170 by a linear combination of "!vi and the hat functions 'Yvr for Vr E N1 \No, for 

m which there exists a triangle TE ~ 1 such that v;, Vr ET. Let L; be the set of 

172 indices corresponding to these hat functions 'Yvr. We recall that when a node 

173 Vr is inserted in a triangle Tr= (v;,Vj,vk) E ~o, it can be expressed as the 

m weighted sum Vr = a;-v; + a;vj + a;;;vk, where the weights are the barycentric 

m coordinates of Vr, Then it is well-known that 

ef>vi = 'Yvi + I:: ar "Iv,, 
rELi 

12 
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17e where ai is the barycentric coordinate of vertex Vi in the expression for Vr Over 

178 Equation 18 may be expressed in matrix form by introducing a matrix A 

m consisting of zeros and the barycentric coordinates ar of the inserted nodes 

180 Vr E N1 \N0 . At the appropriate positions in row r of A, we have the three 

181 barycentric coordinates ar of the new knot Vr inserted in triangle Tr. These 

182 three entries are the only non-zero entries in row r, and they will always sum 

18> to one. In each column i, we have one entry for each element of the set Li, 

184 and entry r is the barycentric coordinate ar of the original knot Vi E No in the 

m expression for the new knot Vr E N1 \No. 

180 The matrix A allows us to write equation 18 in matrix form. If we augment 

187 this relation with the new hat functions I N, we obtain the desired relation 

188 between the two bases { <f,, , N} and , , 

180 This in turn leads to the desired relation between the two bases { <f,, 'Ip} and 1 . 

Lemma 3. The space V 1 has the two bases { <f,, 'Ip} and , which are related by 

[ T T] [ T T] [/ OJ [/ -CJ [ T T] <P ,'If' = 'Yo,'YN A I O I = 'Yo,'YN BR, 

100 where , 0 denotes the hat functions in V 1 with their apex at a node in N 0 and 

101 'YN denotes the hat functions in V1 with their apex at a node in N1 \ No. The 

102 matrices C and A are described above. 

10, Once we have the relation between the two bases it is straightforward to 

m derive a relation between the coefficients b and ( d, w) of a function Ji in the 

... two bases . 

Lemma 4. Suppose Ji E V 1 has the representation 
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in the two bases I and { <P, '¢}. Then the coefficients are related by 

(20) 

and the inverse relation 

[ :: l [ ~ ; l [: -; l [: l (21) 

... where b0 are the coefficients of the coarse hat functions 10 with their apex at 

m the vertices in No and bN are the coefficients of the hat functions I N with their 

m apex at the new vertices N1 \No. 

100 3.4. A local interpretation of the wavelet transforms 

200 The two relations (20)-(21) constitute the wavelet transform and its inverse 

201 - the core algorithms for computations with wavelets. For practical implemen-

202 tation on triangulations, however, it is usually not advisable to form these sparse 

203 matrices. Instead, it is better to interpret (20)-(21) as operations involving a 

20, vertex and its immediate neighbours. 

20s Equation (20) corresponds to the decomposition of Ji into the two parts 

200 Jo E Vo and g0 E W0 . It consists of two steps, namely the application of two 

20, matrices. The first step is to compute the wavelet coefficients w = bN - Ab0
. 

20a The vector w is conveniently indexed by the nodes { Vr E N1 \No}. We consider 

200 one such node Vr, which is inserted in a triangle Tr E ~o formed by three nodes 

210 Vi,Vj,Vk E N0. Recall that the node Vr can be expressed as the weighted sum 

211 Vr = a;vi +a;vj +arvk, where ar,a;,a;; are the barycentric coordinates of Vr, 

212 The wavelet coefficient Wvr is then given by 

(22) 

m the difference between the function value bvr = Ji ( Vr) and the value at Vr of 

m the planar function that interpolates Ji at the vertices of Tr. 

The second step in (20) is given by the relation d = b0 + Cw. Recall 

that the rows of the matrix Care indexed by the nodes in No (the old nodes), 
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while the columns are indexed by the new nodes N1 \ Na. The coefficients d 

are conveniently indexed by the old nodes vi E No, so in component form the 

second step becomes 

dv, = b~, + (Cw)v,· 

m The first term on the right is the contribution from the original function Ji at 

210 the old node Vi. The second part corresponds to the row of C associated with 

21, Vi multiplied with the wavelet coefficients w. This row of C contains a nonzero 

218 entry er at a position Vr E N1 \ No if the wavelet function 'lpvr is adjusted by 

210 the term er <Pv,. Let Li be the set of such indices r. We then have 

dv, = bv, + I: erwvr· 
rEL, 

(23) 

220 The local relations (22) and (23) and the similar version of the inverse trans-

221 form (21) provide a natural way to implement the wavelet transforms. On the 

222 other hand, the matrix form is useful for studying the stability of the wavelets, 

223 as we will see in the next section. 

224 3.5. Analysis of stability 

m Let B be a nonsingular matrix. The condition number 1,,(B) = IIBIIIIB-1 11 
m expresses the conditioning of computing Bx, i.e., how much the relative per-

22, turbation of x is magnified when Bx is computed. 

228 In the following we will measure the stability in the II · II 00 matrix norm 

220 induced by the £00 vector norm llxlltoo = maxi lxil. This means that the stability 

230 analysis provides bounds on the maximum perturbation error which is useful 

231 when working with geometry. 

232 Recall that the wavelet transform is given by 

233 Our next task is to derive an upper bound on the condition number 1,,(BR). 

234 Since 1,,(BR) :S: 1,,(B)1,,(R) and both IIBII = IIB-1 11 and IIRII = IIR-1 11, we only 

m need to derive upper bounds on IIBII and IIRII- The norm of B and therefore 

230 1,,(B) can be determined exactly. 

15 
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237 Lemma 5. The oo-norm and condition number of the matrix B are given by 

23a IIBII = 2 and i,,(B) = 4. 

m PROOF. We see from (24) that IIBII = IIAII + 1. Since a row of A contains 

2co the barycentric coordinates of a point in the plane, we have IIAII = 1. Then 

241 IIBII = 2 and i,,(B) = IIBll 2 = 4. 

242 We now want to derive a bound on i,,(R). Note that IIRII = 1 + IICII, so we 

243 only need to determine a bound on IICII. Since the entries of Care the solutions 

244 of equations like ( 4), we will need to obtain an upper bound on these solutions. 

245 Lemma 6. The matrix C satisfies the bound IICII :S 7 /6 and therefore i,,(R) :S 

248 (1 + 7/6)2
• 

247 PROOF. We focus on a general row of C associated with an old node Vi E N 0 . 

249 The nonzero entries in this row stem from triangles that have been refined and 

240 which have Vi as one of their vertices: If the entry er corresponding to the new 

250 node Vr is nonzero, this means that er is the coefficient of ¢v, in the expression 

m (17) for 1Pvr· From lemma 2 we know that c;- satisfies a bound Ur like (13), so 

252 a bound on the norm of the row of C associated with Vi is given by the sum 

m of all these upper bounds. Suppose further that there are a total of K refined 

m triangles that have v; as one of their vertices. We then need to show that 

7 
K-1 

6 - L Ur 2 0. 
i=O 

(25) 

Now let Tk for k E {O, ... , K - 1} be the triangles that have v; as a vertex, 

listed sequentially, in counterclockwise order, with To= TK and TK+l = Ti, as 

illustrated in figure 4. For i = 0 ... K - 1, the area of each triangle is given by 

Ai = A(T;). If we insert the upper bound from lemma 2, which we note may be 

written as 
K-1 A 
L K-1 k ' 
k=O Lj=O Aj - (Ak-1 + Ak+i)/7 

the desired inequality (25) with this notation becomes 

7 K-l Ak -- L K-1 20. 
6 k=O Lj=O Aj - (Ak-1 + Ak+i)/7 
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Figure 4: The triangles having Vi as one vertex. 

The left-hand side of the inequality can be rewritten in a series of steps, 

m The last expression is obviously nonnegative and hence the desired inequality 

2se has been established. 

m The coefficient 7 /6 follows from the upper bound from lemma 2 with this 

2sa strategy for the proof. But note that the last expression in the proof is strictly 

2so positive as long as at least one of the areas Ak is non-zero, so the bound is not 

200 sharp, and it may be possible to improve the bound. 

m Lemmas 5 and 6 can be summarised as an upper bound on the condition 
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2a2 number of the wavelet transforms. We are also in a position to bound the 

m coefficients of a function in V 1 relative to one basis in terms of the coefficients 

20• in the other basis. 

205 

Theorem 7. Let V 1 be a space of piecewise linear functions over a triangulation 

T1, refined from a space Vo over a coarser triangulation To, by strategy 1 above, 

and let WO be the corresponding wavelet space such that VO EB WO = V 1 • The 

condition number 1,,(BR) of the wavelet tmnsforms between the two bases </>1 

and ( </>0 , 'ljJ0 ) for V 1 is bounded by 

1,,(BR) ::S; 4(13/6)2 . 

For a function f E V1 with the two representations 1 Tb = <pr d + 'ljJT w in the 

two bases, the coefficients are bounded in terms of each other by 

llbll ::S: lldll + (13/6)llwll 

lldll ::S: (10/3)llbll 

llwll ::S: 2llbll 

(26) 

(27) 

(28) 

20• PROOF. The bound for the condition number follows from lemmas 5 and 6 . 

.., The inequalities for the coefficients are obtained from equations (20) and (21) by 

2aa taking norms and using the triangle inequality and the matrix norms computed 

2ao in this section. 

270 Theorem 7 establishes the fact that the condition number is independent of 

271 the geometry and topology of both the initial and the refined triangulation for 

272 refinement strategy I. In the next section we verify that this is also the case for 

273 strategy II. 

27• 4. Refinement strategy II 

27s In our second refinement strategy, we divide an edge in two, and connect 

270 opposite vertices, as shown in figure 5. The construction of the wavelets and 

277 the analysis of stability is similar to strategy I, so the description is brief. 
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218 We now consider a node p inserted on the edge (vo, v1) shared by the two 

210 triangles To= (vo, v1, v2) and T1 = (vo, V3, v1). The inserted node can then be 

290 expressed by the convex combination 

p = >.vo + (1 - >.)v1. 

We construct the corresponding wavelet '!pp by 

3 

1Pp = 1p - LCi<Pv,· 
i=O 

(29) 

291 The coefficients are determined by requiring that 1/Jp is orthogonal to the four 

292 coarse hat functions { <PvJY=o· This leads to the linear system 

Muxu = Fu, 

where, by (7)-(8), the matrix Mu is given by 

f <Pvo<Pvo f <Pvo<Pv1 f <Pvo<Pv2 f <Pvo<Pva 

Mu= 
f <Pv1 <Pvo f <Pv1 <Pv1 f <Pv1 <Pv2 f <Pv1 <Pva 

f <Pv2<Pvo f <Pv2<Pv1 f <Pv2<Pv2 f <Pv2<Pva 

f <Pva<Pvo f <Pva<Pv1 f <Pva<Pv2 f <Pva<Pva 

Ao+A1 +Aa+A.+Az Ao+A1 Ao+Aa 
6 12 12 

Ao+A1 Ao+A1 +A2+A:;+Aa Ao+A2 
12 6 12 

Ao+Aa Ao+A2 Ao+A2+Aa+A. 
12 

A 1+A4 12 

the right-hand side is given by 

12 

A,+As 
12 

Fu= [I <Pvo'Y J <Pv,'Y J <Pv21 J <Pva,r 

6 

0 

A1+A4 
12 

A,+A:; 
12 

0 

(30) 

A1 +A.+As+As 
6 

= 1
1
2 [ (>. + l)(Ao + A1) (2 - >.)(Ao+ A1) Ao A1 r. 

and the vector of unknowns is 

2u The value of .A is determined by the convex combination (29), and the explicit 

294 expressions for the integrals are found by the same procedure as in section 3.1. 
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V3 

Ts 

Figure 5: Overview of the areas involved in the equations for strategy 2. 
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29• 4.1. Bounds for the coefficients 

2ae As we did for the matrix MI, we partition the matrix M II by its columns 

287 as Mn= [m1,m2,m3,m4]. By Cramer's rule, the solution of (30) can be 

299 expressed by 
det[FII, m2, m3, m4] 

co= ' detMn 
(31) 

det[m1, Fn, m3, m4] 
C1 = ' detMn 

det[m1, m 2 , Fn, m4] 
C2 = ' detMn 

det[m1, m2, m3, Fn] 
C3 = . 

detMn 

290 We want to derive a bound on these expressions and note first of all that lemma 

200 1 also holds for Mn, such that D 1 > I Di I for i = 2, 3, 4. Due to symmetry, it 

201 is sufficient to obtain a bound for one of co and c1, and one for one of c2 and 

202 c3. We start with co. 

203 Lemma 8. The coefficient ca is bounded by 

(32) 

204 

20• PROOF. Expansion of the numerator and the denominator for co show that 

200 both have only positive terms, so c0 2: 0. The expansion also shows that the 

207 maximum value for co is obtained for >. = 1. The rest of the proof is similar to 

209 the proof of lemma 2. 

200 A similar bound holds for c1. We now turn to the coefficients c2 and c3. 

300 Lemma 9. The coefficients c2 and c3 are both bounded by 

I I < Aa+Bo <! 
Ck - N - 2' 

Li=l Ai + 2Ao + 2Bo 
fork= 2, 3, (33) 

301 where Ai for i = 1, 2, ... , N are the areas of the triangles adjacent to Vk, with 

302 Ao = AN and AN+l = A1, and Bo is the area of the neighboring triangle of Ao 

303 which does not have Vk as a vertex, as illustrated in figure ?? fork = 2. 
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• • • 

Figure 6: Overview of the areas involved in the proof of lemma 9 for k = 2. 
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PROOF. From lemma 1, we know that the denominator is positive. Expansion of 

the numerator shows that it contains both positive and negative terms, and both 

positive and negative terms depend on the value of >... We split the numerator 

into N+(>..) containing the positive terms and N-(>..) the negative terms, such 

that N(>..) = N+(>..) + N-(>..), all being functions of>... Then 

N-(1) N-(>..) N+(>..) N+(l) 
-~~ < <ck< < , 
detMu - detMu - - detMu - detMu 

since the upper and lower bounds are obtained when >.. = 1 in N+ and N­

respectively. Finally, by direct expansion one can verify that the two inequalities 

30• hold, and the result follows. 

3os 4.2. Analysis of stability for insertion of several nodes 

300 The general description of the wavelet transforms in section 3.3 is also valid 

307 for strategy II. We only need to replace the matrices A and C with matrices 

308 appropriate for strategy II. 

300 The matrix A for the second strategy is similar to the one for the first 

310 strategy. Let vi be an old node in N0 and let Ei denote the set of edges 

m emanating from Vi- Then the old hat function </>v, may be expressed in terms 

m of the new hat function 'Yv, and the new hat functions which have their apexes 

m at the inserted nodes on the edges in Ei, 

<Pv, = 'Yv, + I: ar 'Yvr. (34) 
VrEEi 

314 The vector-matrix version of this relation is 

(35) 

31s The rows of A are indexed by the new nodes in N1 \ N0 , while the columns 

310 are indexed by the old nodes in N 0 • The row associated with a new node 

317 Vr E N1 \ No therefore contains at most two nonzero entries, namely this node's 

318 barycentric coordinates relative to the end points of the edge where the node 
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310 was inserted. Let Ei be the set of edges in the triangulation ~o having node 

320 v; as one end node. In the column associated with the node v;, we have one 

321 non-zero entry for each edge in Ei which has been refined with a new node. 

m The matrix C is based on the relation 

3 

1/Jp = "/p - L c;</Jv, 
i=O 

which in matrix-vector form becomes 

(36) 

323 Each column of C is associated with a new node Vr E N1 \ N0 and contains 

32, four non-zero entries, the coefficients co, c1, c2, c3 for the solution of the linear 

325 system corresponding to the function "Pvr· A row of C is associated with an 

320 old node v; E N0 and contains values of c0, c1, c2 and c3 used as a coefficient 

,27 for the function </>; in any expression like (36). The number of nonzero entries 

328 in row i is equal to the number of refined edges emanating from the node v;. 

320 This means that a node inserted on an edge going out from v; will only result 

330 in one entry in row i, even though it will split two of the neighboring triangles. 

331 So the number of row entries may be smaller than the number of neighboring 

332 original triangles that are split after node insertions. 

333 As for strategy I, the matrices B and R are given by 

(37) 

To bound the condition number 1,,(BR) for the second strategy, we note as 

before that 

m It is therefore sufficient to bound the norms of IIBII and IIRII- By the same 

335 procedure as in lemma 5 we find that IIBII = 2 and K(B) = 4, since the elements 

330 of each row of A sum to 1. 

337 The norm of IIRII is more complicated, since we have two different bounds 

338 for the elements of C. In the row associated with v;, the bound for a nonzero 
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m entry associated with a new node Vr is given by lemma 8 if Vr is inserted on an 

340 edge emanating from Vr, i.e., if Vr E Ei. If instead the new node Vr is inserted 

341 on an edge that is not in Ei, the corresponding entry in the row is bounded by 

342 lemma 9. 

343 We can avoid this complication if we choose our refinement strategy such 

344 that all entries in any given row of C are inserted in a similar way so that they 

345 can be bounded by the same lemma. This means that for each node Vi E N0 , 

3... the new nodes inserted on the edges of triangles adjacent to Vi are either all 

347 inserted on edges in Ei, or all inserted on edges not in E;. For now we just 

34a assume that this is possible and bound the sum of the absolute values of the 

340 entries in a row in each case. 

Lemma 10. Let vi be a node in N0 with valence N and emanating edges E;, 

suppose that no two adjacent edges in Ei have been refined, and let e; denote 

the row of C associated with vi. Then 

no where 11 · II 1 denotes the vector 1-norm. 

PROOF. We first assume that N is even and that every other edge around vi 

has been refined. Moreover, let Tk fork= 0, 1, ... , N -1 be the triangles which 

have Vi as a vertex, ordered cyclically around v;, with To= TN and TN+l = T1 , 

as illustrated in figure 4, and denote the area of triangle Ti by Ai = A(Ti), We 

observe that the denominator in (32) may be rewritten as 

2 2 1 
Ao+ A1 + 3(A3 + A4 + A1) = 3(Ao + A1 + A3 + A4 + A1) + 3(Ao + A1). 

m Note that the first sum on the right contains the areas of all the triangles with 

352 a vertex at v 0 • It is therefore sufficient to show that 

N/2 
~ _" A2k-1 + A2k 
~ N ~Q. 2 k=l i Lj=l Aj + }(A2k-l + A2k) 

(38) 

Since I:f=1 Ak = I:f~~(A2k-1 + A2k), the left-hand side can be written 

N/2 N/2 
~ L A2k-l + A2k _ L A2k-l + A2k _ 
2 k=l I:f=1 Ai k=l i I:f=1 Ai+ }(A2k-1 + A2k) -
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I:(A2k-1 + A2k) ( } 2 N 1
1 

) -
k=l Lj=l Aj 3 LJ=l Aj + 3(A2k-l + A2k) 

~ (! (I Lf=l Aj + i(A2k-l + A2k)) - Lf=l Aj) 
L..,(A2k-1 + A2k) 
k=l (} Lf=l Aj + i (A2k-l + A2k)) Lf=l Aj 

~(A A ) Lf=l Aj + !(A2k-l + A2k) - Lf=l Aj 
L.., 2k-l + 2k ( 2 N 1 ) N k=l 3 Lj=l Aj + 3(A2k-l + A2k) Lj=l Aj 

1 ~ (A2k-1 + A2k)2 
-L.., >O 
2 k=l (} Lf=l Aj + HA2k-l + A2k)) Lf=l Aj - ' 

353 the last inequality being obvious. If less than every other edge is refined, the 

354 outer sum in (38) contains fewer terms which means that it is easier to satisfy 

355 the inequality. 

350 A similar argument applies if not all triangles around node v; are split. This 

357 is the case if the valence of node v; is odd, but may occur also for even valence 

35e if we insert new nodes on fewer than every second edge. In this case we let M 

m denote the number of triangles that are split, and we label these triangles as Tk 

3oa for k = l, ... , M, ordered cyclically around v;, such that for the kth inserted 

m node, T2k-l and T2k are split. Note that since the two triangles that share a 

302 refined edge are both split, the integer M must be even. In addition, we have 

... m triangles that are not split. These we label as Tk for k = M + l, ... , M + m, 

3o, and M + m = N, the valence of v;. Instead of inequality (38) we now obtain 

3o5 from lemma 8 the following inequality that needs to be verified, 

M/2 
~ _ L A2k-l + A2k > 0. (39) 
2 k=l } L~l Aj + } L;'=l AM+j + HA2k-l + A2k) -

In order to show that this equation holds, we observe that 

M/2 
~ _ L A2k-l +A2k > 
2 k=l } L~1 Aj +} L;'=l AM+j + HA2k-l + A2k) 

M/2 
~ _ °'""' A2k-1 + A2k 

L.., M 2: 0, 
2 k=l } Lj=l Aj + HA2k-l + A2k) 

300 where the last inequality follows from the proof of the first case. 
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Lemma 11. Let Ei be the edges emanating from the vertex Vo E No, and sup­

pose that N of the triangles which have v 0 as a vertex are refined along an edge 

which is not in Ei. Then the entries in the row Ci of C associated with Vi is 

bounded by 

307 PROOF. We know that there will be N nonzero entries in the row associated 

3oa with vi. Lemma 9 tells us that each of these are bounded by 1/2, and from this 

300 the result follows. 

370 It may be possible to improve the last bound such that it becomes indepen-

371 dent of N, but we have not been able to do so. Therefore, when strategy II is 

m used, our bound for the norm IICII depends on how the strategy is applied. We 

373 will analyse our particular combination of the strategies in the next section, but 

374 end with a general result. 

Theorem 12. Let V 1 be a space of piecewise linear functions over a triangula­

tion T1, refined from a space Vo over a coarser triangulation T0 , by strategy II, 

and suppose that for each node in N0 , the new nodes inserted on the edges of 

triangles adjacent to Vi are either all inserted on edges in Ei, or all inserted 

on edges not in Ei, where Ei denotes the set of edges emanating from Vi. Let 

WO be the corresponding wavelet space such that VO EB WO = V 1 . The condition 

number 1,,(BR) of the wavelet transforms between the two bases ¢ 1 and ( <Po, 'lj)0) 

for V 1 is bounded by 

1,,(BR) :S max(25, 4 + 4K + K 2
), 

where K denotes the maximum number of triangles in D.0 with one common 

vertex. For a function f E V 1 with the two representations ,rb = </JT d + 'lj)T w 

in the two bases, the coefficients are bounded in terms of each other by 

llbll :S lldll + (1 + a)llwll 

lldll :S (1 + 2a)llbll 

llwll :S 2llbll 
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>7• where a= max(3/2, K/2). 

>7• PROOF. The bound for IICII is given by the maximum of the two bounds from 

377 the lemmas 10 and 11, and the bound for the condition number follows. The 

>7a inequalities for b, d and w follow from equations (20) and (21). 

m The bounds in this section apply when either only strategy I or only strat-

380 egy II is used for a one-level wavelet decomposition. For a multi-level decom-

381 position it is possible to avoid the dependence on the topology in Theorem 12 

382 by applying strategy II appropriately. 

m 5. Multilevel decomposition combining strategies I and II 

>8• There are two types of approaches for construction of a hierarchy of trian-

38& gulations. One is to start with a fine triangulation and remove nodes and edges 

>8• to obtain the sparser triangulations in the hierarchy. Another approach is to 

387 start with a sparse triangulation and create the finer triangulations by insertion 

388 of nodes and edges. We consider the latter approach, and the flexibility of our 

>80 node insertion strategies allow us to insert new nodes in areas with large errors 

••o and keep a sparse triangulation in other areas. 

••1 In this section we give a simple example of how the two node insertion 

••2 techniques may be combined to construct a highly nonuniform wavelet decom­

m position over several levels. Once the hierarchy of triangulations has been con­

••• structed, we may determine the wavelet spaces as described above. Because of 

••• the stability results, we know that nodes may be inserted at arbitrary positions 

••• without leading to serious numerical problems. 

307 One may construct a hierarchy of triangulations using strategy I only. This 

m has the disadvantage that no edge will ever be split, and after some iterations 

••• the triangulations are likely to contain a number of triangles with very small 

400 angles. Although this does not adversely affect the stability of the wavelet 

401 transforms, it may be disadvantageous for other reasons. In order to avoid this, 

402 we combine strategy I with an edge dividing strategy such as strategy II. Recall 
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Figure 7: Combination of node insertion strategies 1 and 2. 

''" that the condition number of the wavelet transform for strategy II has not been 

''" bounded independently of the number of node insertions around a node, see 

,os theorem 12, but it turns out that by combining strategies I and II we can avoid 

'°" this dependence as we now explain. 

407 Suppose that a new node v has been inserted in a triangle by strategy I. We 

,oa then use strategy II to insert one new node on each edge of the original triangle 

,oo in which v was inserted, as shown in figure 7. This means that all the original 

"o triangle edges are split into two, as is also the case for the three neighbouring 

,u triangles which share the three edges. Since v is surrounded by exactly three 

"' triangles, the bound for IICII in theorem 12 will become 3/2 when strategy II is 

"' combined with strategy I in this way. 

"' Let tlk be some triangulation that has been refined with strategy I, and Nk 

"" the nodes in this triangulation. We denote the set of edges in the triangulation 

"" tlk having node v j as one end node by Ej. The combination of strategies I and 

'17 II described above ensures that for each node vi E Nk, the new nodes inserted 

"" on the edges of neighboring triangles are either only inserted on edges in Ei or 

"" only inserted on edges not in Ei. This means that for each row in matrix C, all 

'2o elements are bounded as in Lemma 10 or Lemma 11. 

m There will be a conflict if in strategy I we skip node insertion in only one 
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Figure 8: Combination of node insertion strategies I and II. 

,22 triangle when progressing through the triangles surrounding a node. This is 

m because this triangle will then be divided twice in strategy II. This can be 

'" avoided for example by choosing to divide the longest edge of the empty triangle. 

'25 An example of node insertion where this is done, is shown in figure 8. We see 

m that this results in some triangles being split into four or five new triangles as 

m opposed to the normal six new triangles after refinement by both strategies. An 

m alternative would be to insert a new node according to strategy I in these empty 

"° triangles before continuing with strategy II. 

"" We emphasise that the nested triangulations obtained through this strategy 

,31 will normally not be considered nice triangulations, since some triangles may 

,.. have very small angles and some vertices many neighbouring triangles. How­

m ever these bad triangulations demonstrate well that our wavelets are stable, 

"' independently of the geometry of the triangulations. 

'35 5.1. Multilevel stability 

"" By combining strategies I and II as indicated above, we obtain a hierarchy of 

m triangulations, and it is then of interest to consider the stability of the wavelet 
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... transforms over all levels. So we consider the situation where we have a nested 

... set of triangulations Lio C Li1 C · · · C LiK, constructed alternately by strate­

...., gies I and II, and corresponding nested linear spaces Vo C V 1 C · · · C V K. The 

441 final refinement from LiK-l to LiK is done according to strategy II, meaning 

"' that K is an even number. We can then construct wavelets in the standard 

443 wavelet tradition by applying the above recipes, such that each space Vj may 

444 be decomposed as Vi= Vj-l EBWj-l· By iterating this, the finest space VK 

445 may be decomposed as 

(43) 

.... If we denote the basis of hat functions for Vj by <Pj, and the wavelet basis 

447 for Wj by 1/Jj, the decomposition (43) shows that VK has the two bases <PK 

448 and (</>0 ,'l/)0 ,'1/)1 , ... ,1/JK-i)- The wavelet transforms convert a given function 

44• in V K between representations in these two bases, and stability means that 

•5o the condition numbers of these transforms should be bounded. This analysis is 

... similar to the one in [9]. 

•52 Since both <PK and (¢0 , 'I/Jo,··· , 'IPK-i) are bases for V K, we may represent 

453 a function f in V K by 

K-1 
f = </>icdK = <P6 do+ L, 1/Jf W;, (44) 

i=O 

•5• where do and dK are the coefficients of the hat functions in <Po and <PK respec­

... tively, and wi are the wavelet coefficients of the basis functions in W;. It is 

•5• useful to collect all the coefficients on the right in ( 44) in a long vector 

d = (do, Wo, · · · , WK-1). (45) 

457 The following theorem shows that the wavelet basis is stable in the L00-norm. 

Theorem 13. Let f be a function in V K given by ( 44), and let d denote the 

vector of coefficients given by ( 45). Then 

( 
3 )K/2 K/2-1( 13 5 ) 

40 lldll S 11!11 S lldoll + ~ 6 llw2ill + 2llw2H1II . 
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458 PROOF. Note first of all that llfll = lldKII- The last inequality is therefore 

450 obtained by repeated application of inequalities (27) and ( 41) alternately. When 

400 (27) is applied, the factor 3/10 is gained, while when ( 41) is applied the factor 

401 1/4 is gained, i.e., a factor of 3/ 40 each time both inequalities have been applied. 

402 The first inequality follows from finding the smallest lower bound for dK by 

403 repeated use of the inequalities (27) and ( 41) alternately, and (28) and ( 42) 

404 alternately. 

A standard consequence of Theorem 13 is that if the coefficients of f are 

perturbed, the relative error in f can be bounded by the perturbations in the 

coefficients. Let the perturbed function be J = <t/fdK = </>6 do+ I::!~1 1/Jf 'I.Vi. 

Then, if f is nonzero, 

II! - ill < (40)K/
2 

lido - doll 
11111 - . 3 lldll 

(
40)K/

2
K~

1
(13llw2i-'W2ill ~llw2i+1-W2i+ill) (46) 

+ 3 £a' 6 lldll + 2 lldll ' 

465 where 8 = (do, wo, ... WK-1). 

466 A somewhat disappointing feature of both the estimate in Theorem 13 and 

407 the one in (46) is the presence of the factor (40/3)K/2. This factor emerges 

408 because we repeatedly apply the estimates (26)-(28) and ( 40)-( 42), a total of 

400 K/2 times. 

470 For classical wavelets, the projection from "1h to V k-l is by orthogonal pro-

471 jection in the £ 2-norm. One advantage of this is that successive projection from 

m 'Vk to Vk-l and then to Vk_2 is equivalent to direct projection from 'Vk to 

m V k-2. This has the consequence that when deriving multi-level stability esti­

m mates analogous to that in Theorem 13, we do not need to repeatedly apply 

475 one-level estimates, but we may estimate coefficients on level i directly in terms 

470 of coefficients on level j and thereby avoid the exponential growth. 

477 It is worth pointing out that the estimates in Theorem 13 are not best possi-

478 ble. Indeed, the numerical examples below indicate that the condition numbers 

470 corresponding to the wavelets constructed here do not grow exponentially with 
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480 the number of levels. 

481 6. Numerical examples 

482 We include two numerical examples to illustrate the behaviour of wavelet 

483 decomposition with the wavelets constructed here. The examples confirm that 

484 our wavelet transforms are stable, even for triangulations with small angles 

485 and vertices with a relatively large number of neighbouring triangles, i.e. high 

486 valence. For most purposes, such triangulations are viewed as bad and are tried 

487 to be avoided. 

488 We use a dataset of a mug that was obtained using a laser scanner. This 

480 dataset consists of points in the xy-plane, with a depth value z at each point. 

400 Based on the dataset, we create a sparse initial triangulation. Through refine-

401 ments with strategies I and II alternately, as described in section 5, we establish 

402 a hierarchy of nested triangulations. We start with strategy I and end with 

403 strategy II. We have applied the strategies such that they only refine the inte­

m rior of the triangles and edges, so the boundary of the initial triangulation will 

405 remain unchanged. 

400 When refining a triangle with strategy I, we have chosen to insert the new 

407 node at the position corresponding to the data point that has the z-value that 

498 deviates the most from the plane interpolating the dataset at the vertices of the 

m triangle. In the first example we have added the restriction that the barycentric 

500 coordinates of the new point should be greater than 0.3. This is to avoid triangles 

501 with extremely small angles. In the second example we accept any nonnegative 

502 values of the barycentric coordinates for the new point. 

503 In strategy II a given triangulation is refined by inserting new nodes on 

so4 edges. However, only in rare cases will the original dataset contain points that 

505 lie exactly on an existing edge. To circumvent this problem, we augment our 

500 dataset with new, artificial data points. We have chosen to insert the new nodes 

507 such that the two new edges that connect the two vertices opposite the edge, 

508 form a straight line. However, in some cases the straight line between these 
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Level IIClloo 
Strategy 1 Strategy 2 

0 0.592904 

1 0.652707 

2 0.562035 

3 0.723849 

Table 1: The norm of matrix C for barycentric coordinates greater than 0.3. 

500 two vertices will intersect the edge close to, or beyond, an end point. In such 

510 situations we insert a node, somewhat arbitrarily, at a relative distance of 10 

m % from the end node that is closest to the intersection. The corresponding z­

m value is determined from the plane interpolating the three nearest points in the 

513 dataset. 

m After the desired number K of refinements is reached, we use the piecewise 

m linear interpolant f K E V K over the finest triangulation as the starting point 

510 for the wavelet decompositions. In the two examples reported here, we have 

m used K = 4. We then compute the wavelet coefficients successively. The results 

m are shown in figures 9 and 10 and tables 1 and 2, respectively. As expected, all 

m computed functions behave nicely. 

520 We emphasise that this construction of nested triangulations is merely a 

m tool for demonstrating the robustness of our wavelet construction - for most 

m practical applications more sophisticated constructions would be necessary. 

523 7. Conclusion 

524 We have shown how to construct piecewise linear, wavelet-like functions 

m over a hierarchy of triangulations. The hierarchy is constructed by refinement 

520 according to one of two refinement strategies described in this paper, or a com-

52, bination of these. The first refinement strategy inserts at most one new node 

m in the interior of each triangle, while the second strategy divides edges into two 
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Level IIClloo 
Strategy 1 Strategy 2 

0 0.698621 

1 0.758566 

2 0.832565 

3 0.842255 

Table 2: The norm of matrix C for barycentric coordinates greater than 0. 

m pieces. We have analyzed the stability of the wavelet-like functions for each of 

530 these refinement strategies. For the first strategy, the construction is shown to 

531 be stable independently of the topology and the geometry of the initial trian­

m gulation and the refinement. For the second strategy, we have shown that the 

m construction is stable independently of the geometry of the initial triangulation 

534 and the refinement, but our estimates do depend on the topology. 

m We have also analyzed a refinement strategy, which combines the two basic 

m strategies in such a way that the stability estimates become completely indepen­

m dent of the triangulations. We have included two examples which demonstrate 

m the performance of this refinement strategy. 

5•• This work has some obvious generalizations and extensions. There are many 

540 other ways to refine triangles than the ones we have considered here, all of 

541 which would require a stability analysis. There are also possible improvements 

542 of the work in this paper. The most obvious improvement is to remove the 

54] dependence on N, i.e., the triangulation, in Lemma 11. A seemingly more 

m challenging problem is to confirm the behaviour in the numerical examples and 

545 estimate directly the conditionrng of proJect1on form a space Vi to an arbitrary 

uo coarser space V1, without going via the intermediate spaces. 
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(a) mugVO (b) mugWO 

(c) mugVl (d) mugWl 

(e) mugV2 (f) mugW2 

(g) mugV3 (b) mugW3 

(i) mugV4 

Figure 9: Wavelet decomposition of a mug. Here we require the barycentric coordinates to be 

greater than 0.3 in strategy 1. 
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(a) mugVO (b) mugWO 

(c) mugVl (d) mugWl 

(e) mugV2 (f) mugW2 

(g) mugV3 (h) mugW3 

(i) mugV4 

Figure 10: Wavelet decomposition of a mug on a triangulation, allowing any barycentric 

coordinates in strategy 1. 
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