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ABSTRACT: Modern long-range naval sonars are a potential disturbance for marine mammals
and can cause disruption of feeding in cetaceans. We examined the lunge-feeding behaviour of
humpback whales Megaptera novaeangliae before, during and after controlled exposure experi-
ments with naval sonar by use of acoustic and motion sensor archival tags attached to each animal.
Lunge-feeding by humpback whales entails a strong acceleration to increase speed before engulf-
ing a large volume of prey-laden water, which can be identified by an acoustic signature charac-
terized by a few seconds of high-level flow-noise followed by a rapid reduction, coinciding with a
peak in animal acceleration. Over 2 successive seasons, 13 humpback whales were tagged. All
were subject to a no-sonar control exposure, and 12 whales were exposed to 2 consecutive sonar
exposure sessions, with 1 h between sessions. The first sonar session resulted in an average 68 %
reduction in lunge rate during exposure compared to pre-exposure, and this reduction was signif-
icantly greater than any changes observed during the no-sonar control. During the second sonar
session, reduction in lunge rate was 66 % during sonar exposure compared to the pre-exposure
level, but was not significant compared to the no-sonar control, likely due to a larger inter-individ-
ual variability because some individuals appeared to have habituated whereas others had not.
Our results indicate that naval sonars operating near humpback whale feeding grounds may lead
to reduced foraging and negative impacts on energy balance.
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INTRODUCTION

The past decade has led to increasing focus on
behavioural responses of marine mammals to anthro-
pogenic sound and their biological significance for
individuals and populations (Wartzok et al. 2005).
One of the main causes for concern is powerful naval
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sonars, as they can lead to strong, potentially lethal
effects such as strandings (Cox et al. 2006, D' Amico
et al. 2009), as well as a range of behavioural
responses scaling from low to high severity (Miller et
al. 2012, Sivle et al. 2015). A behavioural response of
major concern is disruption of feeding. Disrupted
feeding activity may lead to lower energy reserves
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for supporting reproductive activities such as breed-
ing and nursing calves (e.g. New et al. 2014, for an
example in elephant seals; Meyer-Gutbrod et al.
2015 for right whales). Cessation or reduction of
feeding in response to naval sonar has been observed
in several species of toothed whales (Miller et al.
2012, Isojunno et al. 2016) as well as in blue whales
(Goldbogen et al. 2013).

However, very little is known about behavioural
responses of other baleen whale species to naval
sonar. This is of particular importance, as their annual
cycle is generally typified by a distinct, seasonal
foraging period in high-latitude feeding grounds,
alternated by periods of low feeding rates during
long-range migration and breeding/nursing periods
in low-latitude breeding grounds (Clapham et al.
1999).

Humpback whales Megaptera novaeangliae are
among the most numerous of the baleen whales (sub-
order: Mysticeti) in the North Atlantic Ocean (Jien
2007), with the Norwegian and Barents Sea being
important feeding grounds for the species in summer
(Nottestad & Olsen 2004, Nottestad et al. 2014).
There, they feed on zooplankton and small schooling
fish such as herring and capelin (Christensen et al.
1992, Jien 2007).

Humpback whales feed by lunging, a technique
that involves engulfing a large volume of prey-rich
water using a flexible buccal cavity and filtering out
seawater, leaving prey inside the baleen plates
(Goldbogen et al. 2007). These lunging events can
clearly be seen by a visual observer when they occur
close to the surface. Using multi-sensor recording
tags, sampling the whales’ movements at sufficiently
high frequencies, lunge events can also be identified
when they occur at depth. When a humpback whale
lunges, it accelerates forward in a burst of fluke
strokes before engulfing a targeted patch of prey-
rich water. As the whale opens its jaws, it rapidly
decelerates due to the transfer of momentum to the
engulfed water (Simon et al. 2012) and increased
drag (Goldbogen et al. 2006, 2007). A lunge can
therefore be detected by an increase in speed fol-
lowed by a subsequent abrupt drop in speed, result-
ing in an acoustic signature comprising a few sec-
onds of high-level flow noise followed by a rapid
reduction in noise level (see Goldbogen et al. 2006
2011, Simon et al. 2009, 2012, Ware et al. 2011, for
studies on lunging in fin, blue, bowhead and hump-
back whales, respectively).

Here, we used controlled experiments at sea to in-
vestigate whether exposure to 1.3-2.0 kHz naval
sonar affected the feeding rates of humpback whales.

We attached high-resolution acoustic and motion
sensor tags to individuals at their feeding grounds,
and collected behavioural parameters before, during
and after being approached by a large ship trans-
mitting sonar pulses.

MATERIALS AND METHODS
Data collection

Fieldwork was conducted in the Barents Sea
between Bear Island and Spitsbergen in June 2011
and 2012 aboard the research vessel 'H.U. Sverdrup
II' (Kvadsheim et al. 2011, 2012). Details of the exper-
iments were described by Kvadsheim et al. (2015)
and are summarized here. Humpback whales were
detected visually from the flying bridge of the re-
search vessel. After a whale was sighted, surface
behaviour was recorded for 30 to 60 min before a tag
boat was launched to deploy a tag, and surface
behaviour sampling continued until the end of the
experiment.

Humpback whales were tagged with a multi-
sensor tag (Dtag, Johnson & Tyack 2003) attached to
the whale with suction cups using a hand-held car-
bon fibre pole, or a pneumatic remote deployment
system. The Dtag recorded sound and depth, 3-
dimensional acceleration and 3-dimensional magne-
tometer data, allowing a fine reconstruction of whale
behaviour. Audio data were sampled at 96 kHz, other
non-acoustic sensors at 50 Hz, later decimated to
5 Hz sampling rate. Visual observations of the
tracked whales were conducted to record group size
(number of individuals in the group with the tagged
individual) and group composition (i.e. calf presence/
absence; see protocol details in Visser et al. 2014).
Pairs of whales were considered potential mother—
calf pairs if they were composed of an adult and a
smaller individual that remained closely associated
throughout the tracking record (Lockyer 1984, Pani-
gada et al. 2005, Curé et al. 2015).

A VHF beacon on the tagged whale was tracked by
a VHF digital radio direction-finder (DFHorten). Con-
trolled sonar exposure sessions started after 2 to 8 h of
baseline data collection. The tagged humpback
whale was then subject to three 10 min duration ex-
posure sessions: 1 no-sonar control and 2 sonar expo-
sures. The no-sonar control was always conducted
first to test how whales responded to the ship alone,
before they heard sonar transmitted from the ship, so
that if the sonar might sensitize them, it should not be
associated with the ship sound. The 2 consecutive
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sonar sessions (sonar 1 and sonar 2) were conducted
to investigate potential habituation or sensitization to
the sonar. An example of a full experiment data
record is shown in Fig. 1, and other examples can be
found in Kvadsheim et al. (2015). The no-sonar
control session consisted of the source vessel ap-
proaching the tagged whale in the same way as dur-
ing a sonar exposure, but without any sonar transmis-
sion. This control was done to be able to clearly
separate any potential reaction to the approaching
vessel from responses to the sonar transmission. The
sonar source was a multi-purpose towed acoustic
source, SOCRATES II (TNO). The sonar signal was a
1.3 to 2.0 kHz upsweep transmitted every 20 s with a
0.5 s and 1.0 s duration for ramp-up and full-power
periods, respectively. During each sonar exposure
session, transmission was initiated at a planned dis-
tance of 1250 m from the tagged whale, as this was
the distance covered during 5 min at 8 knots sailing
speed. The source ship approached the whale for
5 min at 8 knots on a constant course while gradually
increasing the transmitted source level (ramp-up pro-
cedure) from 152 dB to a maximum source level of
214 dB re 1 pPa m at the expected closest point of ap-
proach (designed to be 0 m from the animal based on
its pre-exposure movement pattern). The source ship
then continued to transmit at full power for another
5 min while moving away from the animal. This pro-
cedure was done to achieve a gradual increase of the
received sound level as the ship moved towards the
animal, as well as to simulate a ‘'worst-case scenario’
with the source ship moving directly towards it. The
time interval between the 2 sonar exposures was
planned to be minimum 1 h, or longer if animals were

Exposure phase

apparently still responding. Each sonar exposure had
a 10 min duration including 5 min of ramp-up fol-
lowed by 5 min of full-power transmission. In 2 cases,
the second sonar exposure lasted only 5 min, without
the preceding ramp-up. The order of the 3 exposures
was always the same; first the no-sonar control fol-
lowed by the 2 sonar exposures.

Lunge detection

Lunges were detected following the method of
Simon et al. (2012), using the relative drop in flow-
noise within a short time window when a lunge event
occurs. Sound recordings of the Dtag were first low-
pass filtered (6-order Butterworth filter at 500 Hz),
and the sound pressure level (root mean square) of
40 ms blocks was calculated and resampled to the
same sampling rate as the non-acoustic data (i.e.
5 Hz). Potential lunge events were then automati-
cally detected using a 'lunge detector’ programmed
in MATLAB (MathWorks, version 2012b). This detec-
tor followed 2 steps: first, the detector extracted all
potential lunges identified as noise peaks that (1)
exceeded the 90™ percentile of the flow-noise sam-
ples recorded from the same tag record in periods
when the animal was deeper than 5 m, and (2) were
followed by at least a 12 dB drop in flow noise within
5 s. This 5 s period was truncated if the whale
reached the surface (defined as a depth of 0.5 m) to
discard drops in the noise when the tag is in the air as
the whale surfaced to breathe. The reason for only
using noise data when the descending animal was
deeper than 5 m was to avoid loud surfacing splashes
being detected as lunges (see
Fig. 2c). In the second step,

Post exposure phase

each detected lunge was
evaluated visually to confirm
that it was not a false positive.
Since a lunge is accompanied

1

1
EE by a peak in the jerk signal
* Lunges " (i.e. rate of change of acceler-
. , \ Ei \ \ ation; Simon et al. 2012), a
18:00 21:00  00:00 03:00 06:00 09:00 12:00 peak in the jerk signal
Time (UTC) needed to be identified for a

Fig. 1. Example of the entire 18 h tag record of a humpback whale Megaptera novaean-
gliae (ID mn12_164a) with the different periods of the tag record indicated. ‘Baseline
phase' is the period preceding any exposure. 'Exposure’ includes the 3 sessions ana-
lyzed in this study (no-sonar control in blue, sonar 1 and sonar 2 in yellow), plus the
killer whale playback (in pink) analysed by Curé et al. (2015). The green line in sonar 2
indicates that this particular exposure was conducted as a no ramp-up, thus only last-
ing 5 min. Exposures were always conducted in this same order. The last post-exposure
recovery period after all exposure sessions was particularly long to evaluate potential
recovery time in cases of severe responses

detection to be assigned as a
lunge. In uncertain cases, the
data were further evaluated
by inspecting the spectro-
gram and listening to the
sound file to determine
whether a detected lunge
was real or not. In rare cases
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when the lunge assignment was still uncertain, the
suggested lunge was discarded.

Statistical analysis

We were interested in examining whether the
lunge-feeding rate of the whales changed across the
3 types of exposure sessions: the no-sonar control
and both sonar sessions. The no-sonar control was
used as a negative control to separate a potential
effect of the source ship itself to an effect of the sonar.
Both sonar sessions, i.e. sonar 1 and sonar 2, were
compared to the no-sonar control. For each of the 3
sessions, the number of lunges was divided into 3
different phases: during the exposure period (Dur),
before (Pre) the exposure and after (Post) the expo-
sure session, the last 2 phases corresponding respec-
tively to the periods immediately preceding (Pre) or
following (Post) the exposure and being of equal
duration as the exposure session (10 or 5 min).

The data were analysed using a Poisson general-
ized estimation equation (GEE) model in R software
version 3.0.2 (R Core Team 2013) using the geepack
package (Hgjsgaard et al. 2006). GEEs allow us to
estimate population average parameters from corre-
lated and clustered data by appropriately inflating
the standard errors (Hardin & Hilbe 2003). This
allows us to account for differences between individ-
ual whales as well as correlation within individual
whales, as most tagged whales were tested with mul-
tiple types of exposures. In this analysis, 2 of the
tagged animals were part of the same group and
therefore could not be assumed to be independent of
each other. Therefore, we set the tagged whale
group ID as the blocking unit in the model instead of
the tagged whale ID. We assumed an independent
correlation structure within the blocks and used a
standard robust sandwich variance estimate for all
reported results (Hardin & Hilbe 2003). The response
variable was the number of lunges in a given phase
(Pre, Dur or Post phases). Because 2 animals were
subjected to 5 min exposures instead of 10 min
exposures, a weighting term for exposure duration
was included to account for the unequal time over
which lunges were counted. Explanatory covariates
included phase (Pre, Dur, Post), session_order (no-
sonar control, sonar 1, sonar 2) and the 2-way inter-
action between phase and session_order.

Hypothesis-based model selection was performed
using p-values and backwards selection. The Wald
test statistics and p-value for each parameter esti-
mate in a GEE model indicate the significance of the

difference between factor levels, not the contribution
of the factor covariate to model fit. Therefore for
model selection, we used the p-values given by an
ANOVA (sequential Wald test) on the fitted model
object with a significance threshold of 0.05. For infer-
ence purposes, we used prediction plots generated
from the selected model. The 95 % confidence inter-
vals for the predictions presented were calculated
using a parametric bootstrap on the GEE-based
covariance matrix from the selected model. Upper
and lower quantiles (2.5 and 97.5) were calculated
from 5000 bootstrap iterations.

In addition, we used the output from the 5000 boot-
straps to make comparisons between specific factor
level combinations of interest. We calculated the dif-
ferences between predictions for different factor lev-
els across all bootstraps as well as a 95% confidence
interval for these differences. We concluded that
there was a significant increase or decrease in the
number of lunges in cases where the upper and
lower confidence limits for the differences were
exclusively positive or negative. Where the confi-
dence interval included 0, we concluded that there
was no significant difference between factor levels as
there was a 95% chance that the true difference
between factor levels was 0.

In the statistical analysis, all animals (n = 13) were
used, independent of foraging status prior to expo-
sure (feeding or not feeding). This is assumed to
resemble the real-world situation where animals
encountering a sonar vessel will either be in a feed-
ing or non-feeding state at the start of exposure.

RESULTS

We successfully tagged 13 humpback whales, 5
in 2011 and 8 in 2012 (Table 1). One whale
(mn11_158a) was subject only to the no-sonar control
due to a premature tag release. The remaining 12
whales were all subject to 3 exposure sessions: first a
no-sonar control followed by 2 sonar sessions.

The sonar sessions resulted in escalating dose from
a sound pressure level of 80-100 dB re 1 pPa to max-
imum of 160-180 dB re 1 pPa (Kvadsheim et al.
2015).

In total, we identified 3875 lunge events throughout
the entire tag records for all animals, with lunging
depth averaging (+SD) 25 + 39 m and ranging from
0.79 to 169 m. Feeding activity could be observed at
any time of day. Lunges were typically detected at the
start of the ascent of a dive, corresponding to an in-
crease in the jerk signal and the fluke stroke rate as
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Table 1. Overview of experiments. For each tagged humpback whale Megaptera novaeangliae, the date of tag deployment and total number of lunges exhibited by the
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their start time and number of lunges in the 3 phases: Pre (pre-exposure), Dur (during exposure) and Post (post-exposure). The group composition of the tagged whales
Whale ID

tagged whale and detected during the tag record are given. Each of the 3 exposure sessions, i.e. no-sonar control, sonar 1 and sonar 2, are described in more detail with
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Fig. 2. Typical example of a 5 min sample of Dtag data (mn12_170a) illustrating a foraging dive by a humpback whale
Megaptera novaeangliae with 5 lunge-feeding events. (a) Depth profile with lunges indicated as red dots. (b) Body orientation
of the whale in degrees shown as up—down pitch angle (blue) and roll angle about the body axis (green). (c) Spectrogram of
the sound recording with a 4 kHz upper cut-off showing increase in the flow-noise corresponding to the occurrence of the
lunges (solid arrows). The loud paired broadband impulses are splashes when the animal surfaces (dashed arrows). (d) Jerk
signal (acceleration rate of change) showing acceleration peaks at times of lunges. (e) Fluke stroke activity in degrees, derived
as the pitch deviation, showing that the whale is actively fluke-stroking during lunges. The jerk signal was used in the second
step of the lunge detection to verify whether a detected lunge was not a false positive

Predicted lunges per 10 min

[l Pre-exposure

I During exposure

Post-exposure

10.01

7.51

5.01

2.5

0.01

Fig. 3. Generalized estimation equation (GEE) model
results. Predicted number of lunges made by a hump-
back whale Megaptera novaeangliae for 10 min time
periods obtained from the selected GEE model. The
bars show predictions from the selected model for each
combination of the factor covariates, while error bars
indicate 95% confidence intervals from a parametric

No sonar control (1st)

Sonar (2nd)

Sonar (3rd)

Stimulus (order of presentation)

bootstrap. See Table 2 for tests of significance of specific
contrasts
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Table 2. Comparisons between different factor level combinations (each a combination of 1 factor level of session_order and 1

factor level of period). Period could be 1 of the 3 phases (Pre, Dur, Post; see Table 1) or 1 of the 2 magnitudes of change

between phases Pre and Dur (Pre_Dur) and between phases Pre and Post (Pre_Post). The comparisons were made by calcu-

lating the difference between factor level combinations over 5000 bootstrap iterations. Here we report the mean difference

and the lower and upper 2.5 percentiles. *Comparisons where the quantiles do not span 0, suggesting that there is some
difference between factor levels at the 95 % confidence level

Combination 1 Combination 2 Mean Lower 2.5 Upper 2.5
difference percentile percentile

No-sonar control Pre No-sonar control Dur 0.86 -0.797 2.82

No-sonar control Pre No-sonar control Post -0.56 -2.63 1.23

Sonar 1 Pre Sonar 1 Dur 3.72 1.24 7.71 *

Sonar 1 Pre Sonar 1 Post 3.59 0.171 7.77 *

Sonar 2 Pre Sonar 2 Dur 2.55 0.48 6.28 *

Sonar 2 Pre Sonar 2 Post 2.22 0.74 5.125 *

Sonar 1 Pre_Dur No-sonar control Pre_Dur 2.84 0.2 6.6 *

Sonar 2 Pre_Dur No-sonar control Pre_Dur 1.65 -1.86 6.44

Sonar 1 Pre_Post No-sonar control Pre_Post 4.03 0.49 8.51 *

Sonar 2 Pre_Post No-sonar control Pre_Post 2.81 0.33 6.6 *

sions. This analysis indicated that the reduction in
lunges for sonar 1 and sonar 2 from the Pre to the Dur
phase were significant, as the upper and lower confi-
dence bounds for the difference were exclusively
positive (95 % confidence, Table 2, Fig. 3). However,
this was not the case for the no-sonar control (95 %
chance that the true difference between Pre and Dur
was 0; Table 2). Moreover, the reduction from Pre to
Dur for sonar 1 was significantly different from the
reduction from Pre to Dur for no-sonar control (95 %
confidence), but this was not the case for sonar 2
(Table 2).

The number of lunges over a 10 min period was still
reduced in the Post period compared with the Pre
period, with an average reduction from Pre to Post of
68 and 48 % for sonar 1 and sonar 2, respectively (see
Table 2 and Fig. 3 for uncertainty around these mean
reductions). These differences represent significant
reductions between the Pre and Post phases for the 2
sonar exposures (95% confidence; Table 2). Again,
for the no-sonar control, there was no significant
reduction in the lunge rate between the Pre and Post
phases, as the 95% confidence interval of the differ-
ences included 0.

DISCUSSION
Eifect of sonar on feeding
Humpback whales reduced their lunge rate during
exposure to an approaching vessel transmitting

naval low-frequency sonar signals (1.3-2.0 kHz).
Animals were exposed to the same sonar signals dur-

ing 2 consecutive sessions, and in both cases the
reduction represented a significant change in lunge
rates (95% confidence; Table 2). When the whales
were exposed to the same vessel approaching in the
same way but without the sonar transmitting, the
reduction in lunge rate was not significantly different
from lunge rate in the baseline period (Pre phase)
before any exposures, indicating that the response
can be attributed to the sonar exposure and not to the
vessel approaching. Furthermore, the reduction dur-
ing sonar 1 differed from no-sonar control, but sonar
2 did not (Table 2), despite the relatively similar aver-
age reduction (68 and 66 %, respectively). The indi-
vidual variation during sonar 2 was much greater
than for sonar 1, which probably explains the lack of
significant effects of sonar 2. The large individual
variability may indicate that some animals habitu-
ated, while others did not. An alternative explanation
is that there was a cumulative effect of 2 exposures
and that animals had not fully recovered from the
first exposure at the start of the second (the feeding
rate in the Pre period of sonar 2 was somewhat lower
than in the Pre period of sonar 1) but not significantly
different (Table 2), indicating this not to be an overall
explanation. Our data do not give any indication of
sensitization to the sonar, as weaker, not stronger
responses were seen to the second exposure. The
whales did not resume their pre-exposure feeding
rate immediately after the end of sonar exposure
(mean lunge rate for sonarl/sonar 2 of Pre = 0.53/0.42
and Post = 0.17/0.14 lunges min~!), showing reduced
lunge rates post-exposure (Table 2), indicating that
whales did not immediately resume feeding activity
following sonar exposure.
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Besides the hypothesis that naval sonar signals
might directly affect the feeding behaviour of hump-
backs, another possibility to explain the decrease in
feeding activity is that the prey reacted to the sonar,
e.g. by diving, thus becoming less accessible for the
whale predator. We do not know what the tagged
humpback whales were feeding on, but green and
brown faeces were seen regularly in the vicinity of
the tagged whales, indicating both fish and krill. This
is supported by reports of humpback whales in the
Barents Sea feeding on zooplankton such as krill and
amphipods as well as capelin and to some degree
herring (Skern-Mauritzen et al. 2011, Nottestad et al.
2014). Only for herring are the sonar signals within
audible range (Enger 1967), but several studies have
shown that herring do not show any behavioural
response to such sonar signals even at very high
received levels (Dokseeter et al. 2009, 2012, Sivle et
al. 2012). A change in prey distribution is therefore
not likely to be the cause of the decreased feeding
activity.

Reasons for individual variability

Behavioural responses of marine mammals to
sound depend on contextual variables, including
external factors such as sound source level, signal
characteristics, background noise levels, rise time of
the signal and time of day, as well as internal factors
such as current activity, motivation, past experience
with the sound, age, sex and presence of offspring
(Wartzok et al. 2003). Although the present dataset
overall showed that humpback whales reduced their
foraging activity during experimental sonar expo-
sures, there was substantial variability between the
different individuals tested. Some whales responded
by a total cessation of feeding immediately after
exposure started (e.g. mnl2_164a, sonar 1), some
showed a moderate reduction of feeding (e.g.
mnl2_170a, sonar 1), and 1 whale actually initiated
feeding (mn12_178a, sonar 1). In a sonar exposure
with 2 tagged individuals (mnl12_170ab), 1 of the
whales stopped feeding (tag b), while the other con-
tinued (tag a; see Kvadsheim et al. 2015 for plots of
all experiments).

Responses of humpback whales to various stimuli
may depend on group composition (Tyack 1983,
Dunlop et al. 2013, Curé et al. 2015). In our dataset,
some animals were in groups of 2 or 3 animals, some
were solitary (Table 1). For the no-sonar control, ani-
mals in groups (e.g. mother—calf pairs) had a higher
reduction in lunge rate than the solitary animals,

indicating that animals in groups may be more
reactive to disturbance. McCauley et al. (1998) sug-
gested that different classes (e.g. age, sex, group
composition) of humpback whales may have differ-
ent sensitivity to seismic signals, e.g. adult males
may be less likely to alter their behaviour. This may
also apply to the humpback whales in the present
study, with the strongest reduction in foraging activ-
ity seen in animals associated with a calf (mn11_160a
and mnl12_180a). In a parallel study (see next sec-
tion), the same humpbacks with calves in the present
study also responded more strongly to predator
(killer whale) sound playbacks than other group
composition classes (Curé et al. 2015). Thus, it could
be that groups with calves in general react more
strongly to any potential disturbance stimuli, such as
naval sonar, immediate predator presence or vessel
approach.

Biological significance of reduced feeding activity

Humpback whales migrate to high-latitude waters
in summer to feed in order to accumulate energy
reserves to be invested in low-latitude breeding in
winter. Time and behaviour on the feeding grounds
must therefore be optimized to acquire energy, with
whales maximizing their daily intake by feeding on
high prey densities and using as little time as possi-
ble to find and capture prey (Friedlaender et al.
2013). During a lunge, a humpback whale can engulf
a volume of water and prey equal to two-thirds of its
body mass (Pivorunas 1979, Goldbogen et al. 2007).
Thus, every lunge missed may decrease food intake.
The biological significance of feeding disruption will
depend on the duration of the response as well as
how often the whales are exposed. A full-scale naval
sonar exercise may last for hours and even days, thus
with potential consequences for whale energy acqui-
sition within this period. Such a full-scale sonar oper-
ation may involve additional components such as
multiple ships, submarines and underwater commu-
nication equipment that may add to this disturbance.

In addition to sonar, these humpback whales were
also exposed to playbacks of mammal-eating killer
whale Orcinus orca feeding sounds simulating an
increased predation risk (reported by Curé et al.
2015). The humpback whales abruptly stopped lung-
ing activity when exposed to killer whale feeding
sounds (Curé et al. 2015), and often did not resume
feeding within 1 h (Sivle et al. 2015). Killer whales do
regularly target humpback whales (Jefferson et al.
1991, McCordic et al. 2014), and prey are expected to
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make fitness-reducing behavioural decisions if they
are balanced by a reduction in predation pressure on
fitness. Sonar exposure seems to induce an alteration
of the foraging activity similar to the response seen
when there is an immediate risk of predation attacks.
This indicates that the humpback whales use similar
strategies of response to different disturbance stim-
uli, but also that they may be willing to compromise
with fitness-enhancing activities also when exposed
to sonar.

Conclusions

The current study documents that naval sonar can
disrupt feeding behaviour in humpback whales
when the sonar operates in close vicinity to the
whales, and that feeding behaviour can remain dis-
rupted after the end of exposure. The observed
response to sonar may be of high biological rele-
vance if whales are exposed frequently, as it entails
reduction of feeding in a seasonal prime feeding
habitat.
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