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Abstract— This paper explores a type of hybrid sparse recon-
struction technique for modern multifunction task scheduling
radars and on following range-Doppler plots. A compressed
sensing (CS) framework is devised to emit and then receive
interleaved radar pulses in a scarce manner within a coherent
processing interval. Sparse reconstruction methods are subse-
quently employed to regenerate full resolution range-Doppler
images. Hybrid reconstructed solutions are finally formed by
merging acquired data with sparsely recovered solutions. We
show that this is essential for obtaining robust results in the
presence of noisy environments and to measure outcomes on
equal terms. Real data obtained from an experimental radar
observing a Boeing 737 aircraft is employed to demonstrate the
practical effectiveness of CS and hybrid sparse reconstruction.

Keywords: Range-Doppler, Delay-Doppler, slow-time, com-
pressed sensing, sparse reconstruction

I. INTRODUCTION

A pulse-Doppler radar normally operates by transmitting
a pulse and performing a matched filtering operation on the
incoming delayed and Doppler-shifted pulse echoes; a process
which is repeated within a defined coherent processing interval
(CPI). A range-Doppler plot may be constructed by executing
a Fourier transform over the collected data in slow-time. The
emphasis of this work is on extending compressed sensing
(CS) and sparse reconstruction techniques [1], [2] to modern
multifunction radars. These radars utilize electronically steer-
ing arrays and can instantaneously alter the direction where
a beam may be pointing. A CS radar in this context may
be designed to split the number of pulses available within a
CPI between several distinctive directions and ranges. Flexible
task scheduling and time splitting, however, results in limited
acquired data over various range cells and full high resolution
range-Doppler maps can not be composed.

Several papers have successfully demonstrated the capabil-
ity of CS and sparse reconstruction in a radar context [3], [4],
[5], [6], [7]. Many of the presented approaches are based on
concepts such as transmission of specific waveforms, irregular
sampling in fast-time without matched filtering and simul-
taneous two-dimensional optimization across both range and
velocity. In [7] an alternative design focusing on a less general
pulse-to-pulse slow-time sparse pulse emission was proposed
and only verified via simulations. Nevertheless, a common trait
of all the earlier works is that the sparse solutions found are
considered final. The resulting matrix will therefore contain a

very large number of zeros and have a characteristical "blue"
background in a displayed image. The ability to deal with
noise and smaller targets is therefore not always transparent
as all signal values below a certain threshold will generally be
eliminated alongside the more finer details. This further makes
it problematical to compare the exact performance of sparse
reconstruction methods with respect to SNR, resolution and
so on.

In comparison to [3], [4], [5], [8] in this paper it is not
assumed that the radar emits specific modulated pulses or
that the sampling is done in a sparse or irregular fashion.
We postulate that sampling of incoming waveforms at a given
rate is not really a hindrance and rather emphasize emission
and thereupon reception of whole pulses in a sparse manner.
Further on, each range bin is treated as a separate one-
dimensional problem leading to the use of tractable partial
Fourier matrices. This allows for a large number of possible
targets in the range-Doppler plot with the sparsity constrain
only applying on each range bin.

The main contributions of this paper are threefold: 1)
A general framework extending and now incorporating full
interleaving of pulses is proposed for a CS pulse-Doppler
radar. 2) A hybrid sparse reconstruction technique is suggested
where the recovered sparse solution is only employed partly
to fill in empty data gaps. 3) Real data from an experimental
radar setup is used to demonstrate the introduced principles.

II. RADAR SYSTEM MODEL

We model a type of compressed sensing radar where emis-
sion and reception of N pulses takes place during a CPI.
At the start of each interval a pulse is emitted at a specific
direction. After transmission the radar may start listening for
incoming reflections up to a determined range. The radar may
also alternate between various interleaving modes and transmit
other pulses at different angles. At desired times the radar
may switch attention between the various directions listening
for arriving echoes; thus only covering specified range regions
for distinctive orientations. The procedure will normally follow
specific resource manager optimization [9].

Under ideal circumstances, without pulse interleaving and
no gaps, the incoming reflected waveform p(t) from a specific
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direction at slow-time u = 1, 2, ..., N can be described by

s(t, u) =
∑
n

σnp(t−∆n)ejvn,u + w̃(t) (1)

where t is fast-time, σn are the reflectivity levels of incoming
echoes while ∆n is the signal delay associated with each
reflector n and j =

√
−1. w̃(t) is white Gaussian noise and

ejvn,u is the experienced Doppler phase shift which for a
constant velocity object is typically modeled by

vn,u = vn,u−1 +
ϑn 4πfc
c PRF

, (2)

where ϑn is the radial velocity of target n, fc being the carrier
frequency, PRF is the pulse repetition frequency and c is
the speed of light [10]. We define vn,0 = 0. It is assumed
that within the burst of N pulses the targets do not vary in
amplitude and there is no range walk.

After transmission of each waveform the radar samples any
incoming pulse reflections and a matched filtering operation
is carried out via the time-reversed and conjugated p∗(−t),

Y (t, u) =
∑
n

σnp
∗(−t) ∗ p(t−∆n)ejvn,u + w(t) (3)

where ∗ prescribes convolution in fast-time. In a practical
setting the fast-time parameter will also be discrete, this can
explicitly be re-written with range bin as the first parameter
when all available data is referred by a single matrix

Y(r, u) = Y (r ∆t, u) ∈ CN×R, r = 1, 2, ...., R, (4)

given ∆t as the time-resolution of the radar.
For further processing each column of Y(r, u) indicated by

yr(u), is multiplied element-wise by a windowing function
w(u) ∈ CN×1. Performing a Fourier transformation, with
respect to slow-time, results in a range-Doppler representation
dr(ω):

dr(ω) = F w(u)yr(u) ∈ CN×1. (5)

F is the discrete Fourier matrix of size N × N , Fk,l =
exp(−j2πkl/N). The main components forming the contour
are consistent phase shifts originating from (2). Assembling
together the Doppler profiles in a matrix column-wise results
in a range-Doppler map D(r, ω) ∈ CN×R. Targets with a
steady velocity within the CPI will after Fourier processing
appear concentrated in Doppler.

A. Sparse reconstruction

We next assume that the radar operates in a sparse pulse
emission mode, as described earlier, and only emits K < N
pulses towards a set direction within a dwell. In addition to
that, the receiver may operate in an interleaving mode thus the
number of slow-time samples available at a particular range
bin r̂ is specified by Kr̂ ≤ K. In the following we drop the
subscript r̂ for simplicity, implicitly assuming that the process
is independently repeated across all range bin.

The limited available data is denoted by Ỹ(r, ũ) and the
column specifying range bin r̂ given by ỹ(ũ)r̂ ∈ CKr̂×1, ũ =
1, 2, ...,Kr̂. The slow-time positions where data is collected,

perhaps arbitrary within the CPI of N pulses, is designated
by the set Dr̂. With uneven measurements the target Doppler
model (2) will follow a discontinuous form

vn,ũ = vn,ũ−1 + kr̂(ũ)
ϑn 4πfc
c PRF

, (6)

where any phase discrepancies can be considered describable
by a function kr̂(ũ) ∈ N. Empty gaps and incoherent data lead
to spectral leakage and lower integration gain.

The sparse reconstruction solution to the above problem is
an attempt to assemble an extended range-Doppler profile and
to retain a high resolution in slow-time. The ideal solution
should inter- and / or extrapolate to expand (6) into a form of
(2) with coherent phases across slow-time as only this would
lead to full focusing of each individual target in Doppler. As
the overall profile is assumed to only contain a few targets the
solution will be the one that maximizes sparsity in frequency.
We define L to indicate the number of desired output entries
in slow-time with L ≥ N , an L > N signifying extrapolation.
The reconstructed profile for range bin r̂ in slow-time is
denoted by ŷr̂(û) ∈ CL×1, û = 1, ..., L and the relationship
to range-Doppler map is as previously governed by

d̂r̂(ω̂) = F̂ ŵr̂(û)ŷr̂(û) ∈ CL×1 (7)

where F̂ is an L× L Fourier matrix. We further define a
binary selection matrix Mr̂ ∈ BKr̂×L by taking an L × L
identity matrix IL×L and removing respective rows for which
no collected data is available. We specify this as

Mr̂ = HD r̂(IL×L) (8)

where the function HD r̂ only preserves the rows of the given
matrix as specified by the set Dr̂. The purpose of the selection
matrix is to allow for extraction of values from positions where
slow-time data has been accumulated. We further form w̄r̂(ũ)
by selecting a windowing function of L entries, ŵ(û) ∈ CL×1,
and truncating it:

w̄r̂(ũ) = Mr̂ŵ(û) ∈ CKr̂×1. (9)

The reconstructed profile should agree with measured data
where available, which inclusive tapering, can be expressed as

(Mr̂ŷr̂)(ũ) = ỹr̂(ũ). (10)

To simplify, the index terms are only given for the final prod-
uct. With windowing functions incorporated the requirement
becomes

Mr̂(ŵŷr̂) (ũ) = (Mr̂ŵ)ỹr̂ (ũ), (11)

or F̂M,r̂ d̂r̂ (ω̂) = w̄r̂ỹr̂ (ũ), (12)

given the partial inverse Fourier matrix F̂M,r̂ = Mr̂F̂
∗ ∈

CKr̂×L.
The objective of the reconstruction procedure is therefore

to determine a sparse Doppler profile D̂r̂(ω̂) consisting of L
Doppler samples while concurring with the observations. This
can under convex relaxation be set up as:

d̂r̂(ω̂) = arg min ||ḋr̂(ω̂)||1 (13)

s.t. || F̂M,r̂ ḋr̂(ω̂)− w̄r̂(ũ) ỹr̂(ũ) ||2 ≤ ε (14)

Dette er en postprint-versjon / This is a postprint version. 
DOI til publisert versjon / DOI to published version: 10.1109/RADAR.2017.7944161



where ε is acceptable error and || ||1 indicates the L1 norm.
Finding an independent solution over all ranges r̂ = 1, 2, ...., R
results in a full range-Doppler map matrix D̂(r, ω̂) ∈ CL×R
where any missing data would effectively have been inter-
or extrapolated. The bin resolution of ω̂ in (13) is now
conditioned by L, ∆ω̂ = 2π

L . We remark that in contrast to
previous works, among other things, the Fourier matrix is now
in principle distinct for each range bin. This flexibility provides
opportunities to a pulse interleaving radar as it may increase
the number of measurements at ranges of interest to achieve
greater robustness in e.g. non-sparse regions due to multiple
targets or clutter.

B. Hybrid reconstruction

The sparse solution of D̂(r, ω̂) can be effective as is,
however, it also has several drawbacks. One such disadvantage
is that a sparse solution can be seen as indirectly performing a
detection procedure which is not always desirable. Secondly,
a low figure for ε will force noise to remain in place thus
not yielding clear focusing and enhancement of targets, while
a larger threshold can make more sensitive and faint target
disappear. This paper therefore proposes a merger of the sparse
solution with real measurements where available. At slow-time
and range placements without available measurements, results
from the sparse solution are utilized otherwise the original
data is retained; or alternatively linearly combined with the
sparse solution. One significant advantage of this is that ε
can be set to much lower values as a highly sparse image
on its own is not sought. Traditional classification, detection
and comparison procedures may thereupon be applied on the
hybrid reconstructed range-Doppler map RHyb (r, ω̂). Among
other usages, the sparse reconstruction process may be re-
peated across the Doppler domain on the hybrid image to
improve range resolution.

The hybrid range-Doppler map is formed by transforming
the sparse range-Doppler solution back to slow-time,

ŶS(r, û) = F̂∗D̂(r, ω̂) ∈ CL×R (15)

where F̂∗ ∈ CL×L is the inverse Fourier matrix. The
reconstructed data Ŷ(r, û) is in time domain infused with
collected measurements after tapering

YHyb(r, û) ={
αw̄Ỹ(r, ũ) +

√
(1− α2)ŶS(r, û), (r, û) ∈ D

ŶS(r, û), (r, û) 6∈ D

(16)

where (r, û) ∈ D indicates that measured data at given range
and slow-time is available. A Fourier transform across slow-
time constructs the final hybrid range-Doppler map:

RHyb (r, ω̂) = F̂ YHyb(r, û) ∈ CL×R. (17)

0 ≤ α ≤ 1 may be chosen to weight the solutions accordingly.
In the case of a sparse scene where one is primarily interested
in detections more emphasis may be placed on the sparse
solution, i.e. α close to zero. On the other hand, to preserve the
finer details and obtain a solution resembling a full measured
set α may be stipulated to a greater value.
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Fig. 1: Original R-D map with 16 pulses
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Fig. 2: Standard R-D map from limited data (40% reduction)

III. TRIALS WITH AN EXPERIMENTAL RADAR

In order to evaluate the practicability of CS and hybrid re-
construction methods data accumulated from an experimental
radar was put to use. The S-band radar was aimed at a Boeing
737 flying at a distance of 6.2km. The system was operating
at 3.3 GHz with a bandwidth of 50MHz, LFM pulses with
horizontal polarization and PRF of 4kHz. The maximum range
being approximately R = 10km and the radar was managed
with adjustable smooth movements to integrate pulses over a
longer time frame.

We consider 4 different interleaving transmission and recep-
tion strategies for each pulse: S1) The radar emits and listens
for the full range [0, R]. S2) The radar has its attention else-
where and no data is collected with respect to this direction.
S3) radar emits but listens only covering the range [0, R/2],
S4) radar transmits though listens only for the range [R/2, R].

A. 16 pulses

We initially examine a burst consisting of the first 16 pulses
and figure 1 shows the original full-data range-Doppler plot
with the Blackman window. There is significant unfiltered
ground clutter and the resolution is not sufficient to fully
separate the aircraft from the clutter. This deteriorates further
with CS data acquisition (figure 2) where we assume only
S1 = 10 full-range measurements, S2 = 4, while mode S3
and S4 occur 2 times each. The gaps are placed randomly
within the CPI. This gives an overall data reduction of 40%.
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Fig. 3: Sparse reconstruction from limited data
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Fig. 4: Hybrid reconstruction from limited data, α = 1√
2

For reconstruction ε = 2σ̂ is set for the first simulations,
i.e. twice the estimated noise level, alongside L = 16.
We remark that this is very low level thresholding and a
significant amount of noise is aspired retained. The pure L1

solution from (13) and (14) can be seen in figure 3 which
is therefore definitely not sparse. Employing the proposed
hybrid reconstruction scheme (17) generates noteworthy more
practical and traditional looking image in figure 4 amidst
α = 1√

2
.

Figure 5 displays hybrid sparse reconstruction with L = 32
where an extrapolation of 8 slow-times values is conditioned
on both edges, practicing the same reduced data set. The target
is now clearly distinguishable from the clutter and is much
more localized in velocity. Extrapolation generally contributes
with degrees of freedom augmenting the results.

B. 400 pulses

For further analysis the full collected set consisting of 400
pulses is taken advantage of. Out of 400, data reduction was
carried out by 50% by selecting S1 = S2 = S3 = S4 = 100
randomly within the set. This can be viewed as a radar pointing
at a fixed target and compensating for any movements while
still simultaneously searching in other directions.

Longer integration times provide with higher resolution as
can be seen in the full resolution full data image of figure
7. The next figure 8 is the standard range-Doppler image but
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Fig. 5: Hybrid reconstruction with extrapolation from limited
data
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constructed from the reduced data set showing considerable
spectrum leakage.

Figure 9 demonstrates the image regeneration process via
sparse reconstruction with an extrapolation of 50 samples on
each side bringing forth L = 500 output bins in slow-time.
The sparse solution itself is confined by the noise threshold
level yielding substantial speckle even though the target stands
out clear and unambiguous. The hybrid technique, with α = 1
shown in figure 10, manages to preserve the refocusing of the
target from the sparse image while simultaneously retaining
the more traditional properties of a range-Doppler map. The
image may be applied in any conventional context.
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Fig. 7: Original R-D map with 400 pulses

Dette er en postprint-versjon / This is a postprint version. 
DOI til publisert versjon / DOI to published version: 10.1109/RADAR.2017.7944161



Velocity m/s

R
a

n
g

e
 (

k
m

)

Standard range−Doppler with limited data

 

 

−80 −60 −40 −20 0 20 40 60 80

1

2

3

4

5

6

7

8

9

dBm

−80

−60

−40

−20

0

20

(a) Full

Velocity m/s
R

a
n

g
e

 (
k
m

)

Standard range−Doppler with limited data

 

 

−50 −40 −30 −20 −10 0

6.18

6.2

6.22

6.24

6.26

6.28

dBm

−80

−60

−40

−20

0

20

(b) Zoomed in, PSNR=23.7dB

Fig. 8: Standard R-D map from limited data (50% reduction)
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Fig. 9: Sparse reconstruction from limited data

How the peak target SNR varies with different number of
empty gaps (S2) is established in figures 6 and 11 for hybrid
reconstruction. It is notable that the PSNR can be sustained
with reasonably few pulses, the major issue instead being
Doppler ambiguities, which arise with limited data and can not
be corrected by sparse regeneration. Gaps in data can to some
extent also improve hybrid sparse reconstruction techniques
as vacant positions provide degrees of freedom, which can be
capitalized to narrow down the location in Doppler space.
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Fig. 10: Hybrid reconstruction from limited data, α = 1
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IV. CONCLUSION

Radar systems often rely on range-Doppler maps to detect
targets and this work put forward a hybrid sparse recon-
struction techniques for their formation. It was shown that
through task scheduling and pulse interleaving a radar may
reduce the amount of data collected for individual range
cells and still manage to effectively regenerate missing data.
Hybrid reconstruction permits low threshold values for sparse
reconstruction and preservation of the more fine details. Real
data collected from an experimental radar aimed at a 737
aircraft was used to demonstrate the various principles.
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