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Abstract

In this paper, we propose an image segmentation model where an L' variant of the Eu-
ler’s elastica energy is used as boundary regqularization. An interesting feature of this model
lies in its preference for convex segmentation contours. However, due to the high order
and non-differentiability of Euler’s elastica energy, it is nontrivial to minimize the associ-
ated functional. As in recent work on the ordinary L*-Euler’s elastica model in imaging,
we propose using an augmented Lagrangian method to tackle the minimization problem.
Specifically, we design a novel augmented Lagrangian functional that deals with the mean
curvature term differently than in previous works. The new treatment reduces the number
of Lagrange multipliers employed, and more importantly, it helps represent the curvature
more effectively and faithfully. Numerical experiments validate the efficiency of the pro-
posed augmented Lagrangian method and also demonstrate new features of this particular
segmentation model, such as shape driven and data driven properties.

1 Introduction

Image segmentation is one of the fundamental topics in the fields of image processing and
computer vision. The aim is to partition an image region into sub-regions in order to
capture meaningful objects. In the literature, numerous approaches have been proposed
for this problem. For instance, in the classical snake and active contour model by Kass,
Witkin, and Terzopoulos [22], segmentation contours are driven to object boundaries by
internal forces, such as regularity, and external ones, like the intensity gradient. They
proposed minimizing the following functional:

1 1 1
EC) = a /0 C'(s)2ds + B /0 C"(s)|ds — /0 VF(C(s) s, (1)

where f : Q — R? represents a given image, C(s) : [0,1] — R? is a parameterized curve,
and a, 8 are positive tuning parameters. The first two terms impose regularity assumptions
on the contour while the third one imposes restrictions induced by the given image. In
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fact, as f takes on large gradients along object boundaries, the functional F(C) will take
on a small value when the active contour C resides on these boundaries. Later on, in [7],
Caselles, Kimmel, and Sapiro developed a variational segmentation model called geodesic
active contours, where one needs to minimize the functional:

1
E(C) = /0go(!Vf(C(S))I)IC’(S)Ids, (2)

over all C(s) € S = {C : [0,1] — R? : C(s) is piecevise C*,and C(0) = C(1)}. The function
go : [0, +00) — [0, +00) is an edge detection function satisfying g,(0) = 1,lim, o0 go(7) =
0, and which is also strictly decreasing. The edge detection function takes on values close
to 1 in regions with homogenous grey intensity while being close to zero at boundaries with
sharp intensity gradients. Therefore, the above functional attains its minimum value when
the active contour C(s) lies along edges in the image.

Another classical segmentation model was proposed by Mumford and Shah [30]. In this
approach, the segmentation problem amounts to finding a piecewise smooth function which
approximates the given image, where also the discontinuity set is restricted to be smooth.
They proposed minimizing the following functional:

E(u,I') = /Q\F |Vu|?dx + /\/Q(u — f)?dx + pLength(T) (3)

with respect to both the clean image function u defined on 2 and the discontinuity set
I' c Q A p > 0 are tuning parameters. The methodology has brought forth plenty of
variational models in many topics of image processing, including segmentation, denoising,
inpainting, etc. An interesting offspring of Mumford-Shah’s model is Chan-Vese’ model [§],
where the discontinuity set I' is restricted to be closed curves, leading to a segmentation of
the image into two or several regions. Moreover, a nice feature of Chan-Vese’s model lies
in its treatment of the boundary I" via level set functions [32] that can handle curves with
topological changes easily.

The above mentioned segmentation models are all grey intensity based models, that is,
the segmentation result mainly relies on grey intensity values of the images. However, due
to the complexity of real images, meaningful objects might be occluded by other ones, or
some parts of them may not be distinguished from the background by the contrast. For
instance, in medical image analysis, target organs may be blended with other ones, and
some parts of them may be occluded by other organs or even missing due to the imaging
conditions. Therefore, those grey intensity based segmentation models might not be well
suited for segmenting the target objects from such images. To overcome this issue, one
possible way is to incorporate prior knowledge about the shapes of the target objects into the
segmentation process. A lot of work have also focused on this research topic — segmentation
using prior shape knowledge, see e.g. [12, 13, 14, 23]. Another possible way is to impose
constraints on the segmentation contours to restore the boundaries that are missing or
not well defined by the grey intensity gradient of the images. Of course, those well-known
models discussed above all contain regularity terms on the segmentation contours. However,
the main purpose of these terms is to improve the smoothness of the contours. They add no
other geometric preference on the contours intentionally. In this work, we consider a new
variant of Chan-Vese’s model by using the L'-Euler’s elastica energy as regularization on the
segmentation contours. As will be discussed later, the most interesting feature of this new
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model lies in its capability of producing segmentations with convex contours. Moreover, the
new segmentation model also possesses other new features — data driven and shape driven
properties, the later of which has never been discussed in the literature, to the best of our
knowledge.

Before introducing the L'-Euler’s elastica energy, recall first the standard Euler’s elastica
energy of the curve I':

ET) = /F(a+b/<;2)ds, (4)

where k represents the curvature of the curve and a,b > 0 are two parameters. In the
field of mathematical imaging, Euler’s elastica was first introduced by Nitzberg, Mumford,
and Shiota in their famous work on segmentation with depth [31]. Since then, it has been
adapted to many fundamental problems in imaging, such as image inpainting [11, 26], image
restoration [1, 2, 39], and image segmentation [42, 45]. Notice that this elasticity energy
contains a quadratic dependence on curvature. In fact, in [31] the authors considered
another variant of Euler’s elastica that linearly depends on the magnitude of curvature,
that is, fF(a + b|k|)ds, based on the requirement of preserving corners in the segmentation
contours. For the brevity of presentation, these two Euler’s elastica terms will be called the
L?- and L'-Euler’s elastica terms respectively in the later sections.

Recently, a lot of research have focused on the development of fast and reliable numerical
methods for minimizing curvature based functionals, such as the multigrid algorithm [5],
the homotopy method [41], augmented Lagrangian method (ALM) based algorithms [39,
40, 45] and graph cut based algorithms [4, 18]. Another interesting line of research is
the design of convex relaxation approaches [6, 29, 37, 38]. Their main advantage is the
ability to avoid getting stuck in local minimums, but they also have several limitations: The
computational cost and memory requirements are much higher due to the higher dimensional
formulations of the problems; The curve must be represented discretely by a finite number
of line segments; The convex relaxations only correspond approximately to the original
problems, and in particular the tightest convex relaxation for the Euler’s elastica model
without additional boundary length regularization reduces to constantly zero [6].

In this work, inspired by our previous work [45], we focus on the exact non-convex
formulation and intend to construct a novel ALM based algorithm with fewer Lagrange
multipliers, which markedly reduces the effort of choosing appropriate parameters for ob-
taining minimizers of the proposed model. Moreover, by employing fewer auxiliary variables,
more direct connections among those variables are ensured, which leads to a more accurate
discrete representation of the curvature of the segmentation contours. The augmented La-
grangian method was first used to get fast numerical schemes for nonlinear image processing
models in [40], including the total variation based Rudin-Osher-Fatemi (ROF) model. Ex-
tensions of the augmented Lagrangian method for the ROF model to a spatially continuous
setting were proposed in [21], and an interesting discussion about convergence properties
were given. The fast algorithms were extended to L2-Euler’s elastica and surface curvature
models in [39, 44, 45]. For these non-linear higher order problems, there are many auxiliary
variables to compute and constraints for the Lagrangian methods to handle. One of the
contributions of this work is to reduce the number of auxiliary variables and constraints.
We note that Myllykoski et al. [28] recently also considered an approach to reduce the
number of Lagrange multipliers for an ALM based method for the surface curvature based
image denoising model in [43].
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As a summary, the new contribution of the current work lies in two aspects:

e We propose a curvature based segmentation model that promotes segmentations with
convex contours;

e We develop an augmented Lagrangian algorithm for the new segmentation model,
where curvature is treated in a novel and more accurate way, using fewer variables
and parameters than in related work.

The rest of this paper is organized as follows. In the next section, we discuss the new
segmentation model, where the L'-Euler’s elastica is used as regularization of the segmen-
tation contours, and also present the specific application to segmentation of objects with
convex contours. In Section 3, we discuss a natural extension of our previous work [45]
for this new model and address several problematic issues, such as choosing appropriate
parameters. After than, a novel ALM algorithm is proposed to ameliorate those issues.
We then discuss its numerical implementation in Section 4, which is followed by numerical
experiments that validate the features of the new model and the efficiency of the proposed
ALM algorithm in Section 5. Section 6 is devoted to conclusions.

2 Ll-Euler’s elastica extension of Chan-Vese’s model

In [45], we considered an extension of Chan-Vese’s segmentation model by using the L2-
Euler’s elastica as a new regularizer on the segmentation contours instead of the standard
curve length regularization. This simple modification introduces new features of the result-
ing model: 1) the model is able to connect the boundary around missing parts of objects;
2) it can also capture objects of relatively large size while omitting those of small sizes; 3)
it is more suitable than the original Chan-Vese’s model for keeping elongated structures.
These features have particular applications in medical imaging. For instance, MRI images
often contain the mixture of organs or tissues of different sizes. By applying this model, it is
possible to locate the boundaries of organs of considerable sizes while ignoring tiny tissues.

In this work, we intend to study another modification of Chan-Vese’s segmentation model,
that is, instead of the L?-Euler’s elastica, we utilize the L'-Euler’s elastica as regularization
on the segmentation contour. With the aid of a level set function [32], we may express this
new variational model (called ECV-L! segmentation model) as follows:

Vo

aso|v ool ivE@l. ©)
where f : 2 — R is a given image, ¢ is a level set function whose zero level set locates
object boundaries, and a,b > 0 are parameters. The term V - (V¢/|V¢|) denotes the mean
curvature of the level curves of ¢, and the second part of the above functional just represents
the L'-Euler’s elastica of the zero level set of ¢. The most remarkable feature of this new
modified segmentation model is that it promotes convex contours provided the parameter b
is sufficiently large. It may therefore be used for the particular task of segmenting objects
that are known to have a convex shape. This specific feature is supported by the following
theorem in differential geometry [16]:

E(6,c1,c2) = /Q (f — )’ H(@) + (f — e2)*(1 — H(9)) + /

Q

Theorem 1. Let T’ be any closed piecewise smooth curve in R? and k its curvature, then
Jr|klds > 27 and equality holds when T is a convex curve.
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We remind that a convex curve is a closed curve that is the boundary of a convex set. As
this integral along convex curves is always 27, one still needs the length term to prohibit
excessively large contours in the segmentation.

A nice feature of using a level set function in the above model is that since multiple
curves can be represented by a single level set function ¢, one may impose convex shape
priors on several objects simultaneously. Moreover, if the parameter b is chosen large, only
those convex contours that encompass relatively large regions will be preserved in the final
segmentation.

In contrast to the FCV-L? segmentation model introduced in [45], the ECV-L! seg-
mentation model discussed in this paper assumes two new features: first, it prefers convex
boundaries when the parameter b is chosen large; second, the model is capable of preserving
sharp corners, since the L!-Euler’s elastica linearly depends on the magnitude of curva-
ture, while the ECV-L? segmentation model necessarily smears out corners. The corner
preservation property of the L'-Euler’s elastica energy was first pointed out in [31].

Just as in many other higher order variational models [1, 2, 31, 43|, the numerical treat-
ment of this new model is also nontrivial. The difficulty is mainly due to the presence of
the curvature term, which makes the model high order, nonlinear, and non-differentiable.
Recently, quite a few research works have focused on the development of efficient algorithms
for these models, such as the multigrid algorithms [5], the homotopy method [41], and aug-
mented Lagrangian methods (ALMs) [40, 39, 45]. In this work, we confine ourself to ALM
in order to develop an efficient and reliable fast algorithm for the functional (Eq. 5), which
will be detailed in the following sections.

3 The development of a novel augmented Lagrangian method

In this section, we first consider a natural extension of our previous work [45] for the new
segmentation model and point out its problematic issues, and then develop a novel ALM
for the minimization of the original model (Eq. 5).

3.1 Issues arising from the previously proposed ALM for the model

Recently, ALMs have proven to be very useful in designing fast algorithms for variational
imaging models with higher order terms or/and non-differential terms [39, 40, 44]. These
models include the classical Rudin-Osher-Fatemi (ROF) model [36] and the Euler’s elastica
based models [2, 11]. The idea of ALMs is first to convert the minimization of those func-
tionals to constrained problems, from which appropriate augmented Lagrangian functionals
can be constructed. Based on the theory of optimization, the search of minimizers of the
original functional amounts to finding saddle points of the resulting Lagrangian functionals.
To get saddle points, one only needs to deal with several lower order subproblems, some of
which can be solved using FFT while others have closed-form solutions. Therefore, with
the utilization of ALMs, those issues relating to higher order terms and non-differentiable
terms can be solved or avoided.

Following the idea in the work [10], we may introduce a new function u = H(¢), and as
V- (VH(¢)/|IVH(¢)|) = V- (Vu/|Vul), one can rewrite the functional (5) as follows:

E(u,c1,e0) = /Q(fcl)ZuﬁL(fC2)2(1u)+/ ;Z|

[a+b‘v
Q

[iwul @
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where u is supposed to take on the value of either 0 or 1. Note also that the curvature
makes pointwise sense only for C? functions. By following the ideas of [10, 45], one could
relax the value of u inside the interval [0, 1], introduce some auxiliary variables, and thus
get the new constrained minimization problem:

Mt pnenes Jo [(f = )*u+ (f = 2)*(1 = w)] + e + bV - nl]|p],
with p = Vu,n = Vu/|Vu|,u € [0, 1]. (7)

To deal with this minimization problem, just as in our previous work [45], one could con-
struct an augmented Lagrangian functional as follows:

L(v,u,q, p,n,m, c1, 2, A1, A2, Az, Aty Ag) = /Q[(f—cl)zv+(f—C2)2(l—v)]
+ [ @+ tlablp
+ n/(\pl—p'm)Jr/M(Ip!—p-m)
+ /m Vs [N p-ve) @)
+ 5 Q( />\3 q¢—V-n)
+ 5 [o—ws /)\4(v—u)+5p()

+ /m—mP(/ () + b ),

where D = [0,1] and R = {m € L?(Q) : |m| < 1 a.e. in Q}, and dp(v) and 6z (-) are the
characteristic functions on the sets D and R respectively:

Sp(v) = 0, if v e D;
bl = 400, otherwise.
0, if meR,;

Or(m) = { 400, otherwise.

The 7}s,i = 1,...,5 are positive parameters, while A1, X2, A3, , A4, A5 are Lagrange multipli-
ers. As discussed in [39], a tricky technique used here is the introduction of the variable
m, which helps simplify the associated subproblem for the variable p. In fact, as m € R,
that is, jm| < 1, then |p| — p-m > 0 and the equality holds if and only if m = p/|p|. One
thus avoids the quadratic term [,(|p| — p - m)?, which leads to a simpler subproblem for
p. Moreover, the introduction of the variable ¢ is to tackle the non-differentiable term of
mean curvature.

Using the same technique as in [45], the saddle points of this Lagrangian functional
can be found by solving the resulting subproblems using either Fast Fourier Transform
(FFT) or their closed-form solutions. However, to do so, one needs to choose appropriate
auxiliary parameters 7;s,i = 1,...,5. In fact, the choice of these parameters for the current
segmentation model is more involved than for denoising problems. This is because for
denoising problems, the cleaned images should be close to the given noisy ones, which is an
intrinsic constraint that is not possessed by segmentation problems.
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Basically, the principle of choosing those auxiliary parameters naturally meets two fun-
damental requirements. First, segmentation results should be mainly determined by the
grey intensity of the image under consideration, which give the regularization term a sup-
portive role. Second, the quantity of mean curvature of segmentation contours needs to be
expressed reliably, otherwise, the above functional (8) fails to faithfully reflect the essence
of the ECV-L' segmentation model (Eq. 5). To satisfy the first prerequisite, besides the
model parameters a and b, those auxiliary parameters s need to be chosen relatively small
so that the fitting terms remain dominant. On the other hand, to fulfill the second need, one
has to set r}s relatively large in order to strengthen the connection among those auxiliary
variables and thus express the curvature term effectively. These two seemingly opposite
prerequisites considerably narrow the feasible range of the parameters r.s. Moveover, as
discussed above, theoretically, the ECV-L' segmentation model promotes convex contours,
which also requires the curvature to be expressed accurately so that this particular feature
of the model can be embodied. Therefore, the choice of these auxiliary parameters becomes
a crucial issue for the numerical implementation of the ECV-L! segmentation model.

To overcome this issue, one possible way is to utilize other methods to represent the
curvature term directly, such as the well-known I'-convergence [15]. In the literature, the
notion of I'-convergence has been successfully employed to deal with the minimization of
functionals involving the L2-Euler’s elastica for image segmentation [20, 25]. With this
technique, the original functional can be approximated by a sequence of more tractable
functionals whose minimizers converge to that of the original functional. However, to the
best our knowledge, there is no related work on functionals involving the L!-Euler’s elastica.

In this paper, we still stick to augmented Lagrangian methods, but intend to develop a
different augmented Lagrangian functional with fewer Lagrange multipliers for the ECV-
L' segmentation model. Besides considerably ameliorating the issue of choosing auxiliary
parameters, due to the fewer new variables involved, this novel ALM can capture the mean
curvature more directly and reliably.

3.2 A novel augmented Lagrangian method for the EC'V-L' model

In this work, we adhere to the original form of the model (Eq. 5), that is, we will use a
level set function instead of a binary function as in (Eq. 6), to represent the segmentation
contour. This is because the mean curvature of the contour can be expressed more accurately
in terms of a level set function than a binary function after discretization.

Besides keeping the level set function, we plan to develop a new augmented Lagrangian
functional for the ECV-L' segmentation model with fewer Lagrange multipliers, but with
a more tight connection among those auxiliary variables that describe curvature. In [39],
as discussed above, in the Euler’s elastica based image denoising model, the curvature term
V-(Vu/|Vu|) was expressed as V-n with n = m, m = p/|p|, and p = Vu. The introduction
of m is to relax the direct connection of n = p/|p|. This new variable considerably simplifies
the treatment of the associated subproblem for p. Due to the intrinsic constraint that
denoised images should be close to the noisy ones, these relaxations often work very well
for denoising problems [39]. However, these relaxations become problematic when dealing
with curvature terms in segmentation problems. As discussed above, the main reason lies
in the fact that with too many relaxations, the curvature terms often cannot be expressed
accurately.

7

Dette er en postprint-versjon / This is a postprint version.
DOl til publisert versjon / DOI to published version: 10.3934/ipi.2017001



To fix this issue, we first approximate H(¢) and VH(¢) as in [8] as:

H(¢) = % + %arctan(%),
1
VH(Qb) = ;ﬁv¢a

where € > 0 is a small parameter. We can then develop a new augmented Lagrangian
functional with a direct connection between p and n for the original model (Eq. 5) as

follows:

£(¢a q,pP, 1N, C1, C2; )‘17 )\27 )‘3)

+

_|_

€

{(f —c1)? <; + iarctan(¢)>
(7= e (5 - oretan(®) )y + [ (et vl 5ol
T [ p=ver+ [ A p-vo) )
0=V + [ dalg=V-m

2 Ja

r3
/HMn—pF+/AyUMn—m-
2 Jq 0

In this new functional, the variables p and n are connected through |pjn — p = 0.
This functional involves only three Lagrange multipliers, instead of five as the augmented
Lagrangian functional (8), which considerably reduces the effort of choosing appropriate
auxiliary parameters for the numerical implementation.

With this new Lagrangian functional (9), as discussed in [39, 45|, one just needs to find
its saddle points in order to get local minimizers of the original functional (5). To do so, we
employ the standard iterative strategy: we minimize the corresponding functional for each
variable by fixing the other ones, and then update the Lagrange multipliers; this process
will be repeated until all the variables are convergent, indicating that some saddle point
has been obtained. In what follows, we discuss the subproblems associated with all the
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variables. Specifically, the corresponding functionals can be expressed as follows:

T
/bIQHpH;/(q—V-n)ZJr/AQ(q—V-n),
Q Q Q

e1(q)

(10)

20 = [0 -ap (G Tactan®) + (- ap (5 - L@ )]+ 2 [ p-vo?

e3(p)

I
S—
=
_l_
=
=N
<
+
Sl
S—
F
<l
S
\

1 (p— Vo) + /Hp\n p|?

cum) = 2 Q(q—v n)? /QA2<q—v~n>+’;/gzup|n—p|2+/QAs<\p|n—p>7
es(c1) = /Q(f—cl)2 (;—&-;arctan(f)),

cole) = /Q(f—62)2 <; _ iarctan(f)).

As discussed in [39, 45], the minimizers of the functionals €1(q),e5(c1), and e6(c2) can
be obtained explicitly, and the ones for e5(¢) and e4(n) are determined by the correspond-
ing Euler-Lagrange equations. For the functional e3(p), it possesses a non-differential term
involving |p|p and therefore its Euler-Lagrange equation can only be obtained for its regular-
ized version, which introduces approximation errors and makes the Euler-Lagrange equation
intractable numerically. This explains the motivation of introducing the new variable m in
[39]. In this work, we try to find its minimizer directly. Let’s first reformulate the functional
e3(p) as follows:

ritrsl+nP) | Ag+nVe— A |

€
53(1)) = /Q [(a+b|q])M+A3n ’p|+ 9 T1+7’3(1+|n|2)

_ / rsp - nlp| + . (16)
Q

where ¢ is independent of p. Note that there is no spatial derivative of p in e3(p). Therefore,
one just needs to consider the minimizer of its integrand at each point of the region ().
Specifically, we only need to find the minimizer of the function g : R? — R as follows:

I

9(x) = x|+ Sl —al*+ (- %), (17)
where A\, 1 € R, a,v € R? are given with g > 0. To this end, we propose the following
theorem.

Theorem 2. Assume that p > 2|v|. Let 8 be the angle between the vector a and the
minimum vector of g(x) listed in (17), and « the angle between a and v. Then the following
arguments hold:

o if A\ > ulal, then g(x) attains its minimum at x = 0.
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L 4

Figure 1: Two vectors v, a and a possible unit vector b that maximizes the function ¢ (b).

e if \ < plal, the minimum point of g(x) can be determined according to the following
four cases:

1. ifa=v =0, the minimum occurs at x = 0 if A > 0 and any vector of length

—é if A< 0;
1

2. ifa# 0,v =0, the minimum point can be expressed as (1 — )a;

ulal
A v

=2y v|”

4. if a# 0,v # 0, the angles 8 and « satisfy the equation

3. ifa=0,v # 0, the minimum occurs at

p?alsin@ — plv||alsin @ cos(6 + a) + A|v|sin(f + a) — pla||v|sina =0, (18)

[u(b-a) — Ab
w+2v-b

1 [ cosg —singl
a

and g(x) has its minimum at with b being a unit vector satisfying

(19)

- H sinf  cosf

and 0 = 0 if det[v a] > 0, § = —0 if det[v a] < 0, where [v a] denotes the 2 x 2
matriz with the vectors v and a being the first and second column respectively.

Proof. Set x = tb, where ¢ > 0 and |b| = 1, and fix the vector b, then g(x) becomes a
function of ¢ as follows:

h(t) = X+ g[tz —2t(b-a)+ [a*] +t*v-b
2 2
[ p(b-a) —A1" p o [u(b-a)— )
= (£ -b) - B2V A B 2 A 20
(2+” { el B L Bl e ey (20)
Since p > 2|v|, § 4+ v -b > 0 for any unit vector b. Note that h(t) is defined for ¢ > 0.
Therefore if t* = “}S:’_?ZL)‘ < 0, h(t) attains its minimum value at ¢ = 0; while if ¢* > 0, h(t)
2
takes on its minimum value £|al? — % at t*.
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Hence, if A > plal, then p(b-a) — A <0 for any unit vector b, and ¢* < 0. This leads to
our first claim in the theorem.

On the other hand, if A < plal, for any unit vector b, one has either u(b-a) — X <0
or u(b-a) — X > 0. For the first case, t* < 0, and h(t) takes its minimum value 4|a|?,

[p(b-a)—\]?
2(u+2v-b)

than 4|a|?. Therefore, to find the minimum of g(x), one needs to find the maximum of the

function ¢ (b) = % over those unit vector b with u(b-a) — A > 0.
In what follows, let’s consider those cases under the assumption A < u|a| one by one.
If a=v =0, then g(x) = A|x| + §|x[%. As x> 0 and X < pla| = 0, simple calculation
shows that the minimum value occurs at all those x with length —\/p.
If a # 0,v = 0, then g(x) degenerates to be Alx| + 4|x —a|®. As shown in [39, 45], its

|| plal

If a=0,v # 0, ¥(b) degenerates to be ¥(b) = 2(,14?7;/1))’ Whose maximum is the unit

vector —Ll Therefore, the minimum of g(x) reads t*(
If a # 0,v # 0, as the angle between the vectors b an& ai
1(b) can be reformulated as a function ¢(6)

while for the second case, the minimum value reads %]a]Q — , which is strictly less

minimum reads maxz{0,1 — — }a, and therefore (1 — —)a since A < pla.

v
n—= 2IVI vl
s denoted by 6, the function

(plal cos — \)?
w+2|v|cos(6 + a)’

¢(0)

and simple calculation gives that ¢() takes its maximum value at the angle 6 satisfying
the following equation

p?)alsin @ — p|v||a) sin 6 cos(d + a) + A|v|sin(f + «) — plal|v|sina = 0. (21)

Once the minimum 6 of ¢(#) is obtained, one still needs to determine which b should
be chosen as the minimum of ¢(b) since 6 is the angle between b and a. Notice that

Y(b) = %. Geometrically, as shown in Fig. 1, the smaller the angle 6 is, the bigger
the numerator of ¥ (b) will be; while for its denominator, if the angle between b and v is
larger, the denominator will be smaller. These facts show that to attain the maximum value
of ¥)(b), b should sit on the further side of a with respect to v. This requires to use the sign
of the determinant of the 2 x 2 matrix [v a] to determine the orientation of b with respect
to a. Specifically, if det[r a] > 0, we may rotate the unit vector a/|a| counter-clockwisely
to get b; while if det[r a] < 0, b can be obtained by rotating the vector clock-wisely. In

this manner, one finds the maximum b for ¥(b), and thus gets the minimum of the goal

b _ luba)-)

function g(x) as t* D

b, which proves the theorem. ]

Remark 1. Notice that if one expresses the integrand of e3(p) as the function g(p) defined
as (17), those parameters read X\ = (a + blg|)e/[7(e? + ¢*)] + A3 -0, = r1 + r3(1 + |n|?),
and v = —rgn. Then it is easy to see that the assumption p > 2|v| is surely satisfied,
since r3(1 + |n|?) > 2r3|n| for any n. Therefore, the above theorem can be applied for the
minimization of the functional e3(p).

Remark 2. Based on this theorem, the closed-form minimizer of e3(p) only exist for several
extreme cases. In general, one has to solve the equation (18). In this paper, we solve it using
Newton’s method with an initial 0 satisfying [cos@,sin@] = a/l|a|, that is, choose the unit
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vector along with the vector a as the initial guess of b when mazimizing the function ¥ (b).
In fact, if the minimum 6 is close to 0, by using the approrimation that cos(f + o) =~ cos «
and sin(0 4+ «) ~ sin«, one gets an approzimation

vI(ulal - \)sina
ulal (1 + V] cos @)’

sinf = (22)
and then we may also use this particular 6 as the initialization when solving (18) if A €
[0,2u|al]. This is because if A € [0,2ulal] and also p > 2|v|, then |ula] — A| < ula| and
lv| < p+ |v|cosa, and therefore one can guarantee that this approximation of sin@ lies
inside [—1,1].

Remark 3. In fact, the constraint |pln—p = 0 was also employed in [17]. However, in this
work, we propose a novel method to deal with the associated subproblem of p directly, while
in [17], a fixed-point based technique was used. Specifically, during the iterative process, this
constraint is relazed to be |pF~'n —p = 0 in the k' iteration, and the minimization of the
subproblem of p is circumvented and an approximation of its minimizer is obtained using
the same technique as in [39].

Similarly as was done in [39, 45], as £1(q) can be rewritten as

eilg) = /szmIQIJr?[q—(V'n—;\z)rJra, (23)

where ¢; is independent of ¢, its minimizer reads

| be|p| }
\ _ 01— * 24
rgmin,e1(q) max { rom(e? + ¢?)|q*| ! -

with ¢* = V -n — Ag/ry. And the minimizers of e5(c;1), and €¢(c2) are given as follows:

. Jo(3 + Larctan(2)) f o
! fQ arctan(%)) ’ (25)
= — arc an(2

fQ % farctan(%))

As for the functionals £5(¢) and e4(n), standard procedures lead to the following Euler-
Lagrange equations:

€ 2¢
RAG = (e (- e (o bl
-V (Tlp + )\1), (27)
—raV(V-n) +r3pf’n = —V(rag+A2) — (A3 — 73[p|)p. (28)

In summary, as discussed above, to find saddle points of the new augmented Lagrangian
functional (9), we minimize each of the above functionals ¢/s,i = 1,---,6 by fixing other
variables, and once all these variables are updated, we then advance the Lagrange multipliers
A1, A2, Az as follows:

At = A4 (p - Vo), (29)

Apew = XS gy (g — V- n), (30)

A3 = X+ r3(|pjn — p). (31)
12
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Table 1: Augmented Lagrangian method for the ECV-L! segmentation model.

1. Initialization: ¢°, ¢", p°, n®, and AJ, A9, )\g.

For k > 1, do the following steps (Step 2 ~ 4):

2. Compute an approximate minimizer (gbk ,qk,p]’C ,nk) of the augmented Lagrangian
functional with the fixed Lagrangian multiplier )\’f_l, /\]2“_1, /\]§_1:

(6", ¢", pF, %) ~ argmin L£(,q, p,n, \F71 NETL NETL), (32)

3. Update the Lagrangian multipliers
A= ATt - Vo)
A5 = M7l 4ra(df - V0"
A5 = A+ rs(lpn® - pb),

4. Measure the relative residuals and stop the iteration if they are smaller than a
threshold e,.

We repeat this process until all the variables are convergent. The above procedure can be
summarized as in Table 1 and Table 2.

4 Numerical Implementation

In this section, we present the details of solving the equations (27) and (28) and update the
variables g, p and c1, ce as well as the Lagrange multiplier A1, Ao, A3 during each iteration
when applying the iterative algorithm for finding saddle points of the Lagrangian functional
(9). As the numerics are very similar to what discussed in [39, 45], only key points are
included below.

Let Q = {(4,7)]1 <i < M,1 < j < N} be the discretized image domain and each point

Table 2: Alternating minimization method for solving the subproblems.

1. Initialization: 50 =¢F 1 ¥ =¢ 1, p* = pF !, and n° = nF L.

2. For fixed Lagrangian multiplier A = A’f_l, Ay = )\]2‘“_1, and Az = )\lg_l, solve the
following subproblems :

o' = argmin £(¢,3°,p", 0%, A1, A2, A3) (33)
¢' = argmin E(q~51, ¢,p°, 0%, A1, A2, A3) (34)
p! = argmin £(¢~51, @, p, 0%, A1, A2, A3) (35)
n! = argmin £(¢1, 3P0, AL, A2, Az) (36)

3. (%, ¢, p¥,n*) = (¢', 3", p', 0').

13
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(i,7) is called a pixel point. All the variable functions are defined on these pixel points.
We first introduce the discrete backward and forward differential operators with periodic
boundary condition as follows:

oo = { ) s 1S
o = {50 L2
o) = { SN oI LTSN
I B A L

and the central difference operators and the gradient operators are defined accordingly as

96(i.j) = (07 6(i.5) + 07 ¢(i4))/2,
06(i.j) = (05 6(i.5) + 05 63, 4))/2,
VEG(i,g) = (070(i,4), 05 6(i.])).
We first discuss how to solve the equation (27) using FFT. As this equation contains

nonlinear terms of ¢, we employ the frozen coefficient technique to solve it, and consider
the following equation

€ 2¢e|p|o
—mA — e [ f—e)2 = (f—e)2 il Lt b
PAG+ e = by = (= en)? = (= e2)?) + o+ Hal)
—V .- (rmp+ A1), (37)
where 64 > 0 is a small parameter, and its discretization as follows:
i V006 = Gp0— e [(f = 1) — (f — )] + (a + blal) AR
(€2 + ¢?) (2 + ¢2)2
=0y (r1p1 + A1) — Oy (rip2 + A12), (38)

where p = (p1,p2) and A; = (A11, A12). Let’s denote the right side by the function g and
apply the discrete Fourier transform F for both sides. Notice that

Fofo(i,g) = (e —1)Fo(i, ),
Fore(i,j) = +(VH —1)Fo(i, ),

where z} = 27(i = 1)/M,i=1,---,M, 2§ = 27(j —1)/N,j = 1,-- -, N. We get
(—2r1(cos 2} + cos 2]2- —2)+04)Fo(i,5) = Fg(i,j). (39)

Once F¢ is calculated, ¢ can be obtained using the discrete inverse Fourier transform.
As for the equation (28), notice that the coefficient r3|p|? varies over © and also might
not always be positive. We hence consider the following equation

—roV(V-n)+Dn = (D —r3|p/ )n— V(raqg+ X2) — (A3 — 73|p|)P, (40)
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where D = max,cq(r3|p|?+0dn) with d,, being a small positive number. Asn = (ny,ns),p =
(p1,p2), the discretization of (40) leads to a system,

—ro(0f Oy n1 + 07 9y ma) + Dny = (D —r3|p|*)n1 — 0] (r2q + A2) — (A3 — r3|p|)p1,
—19(0F Oy 1 + 0 9y o) + Dngy = (D — r3|p|*)na — 05 (rag + A2) — (A3 — r3|p|)p2.

Denote the two right sides by the functions hi, ho respectively. One applies the discrete
Fourier transform to both sides and gets the following 2 x 2 system for (Fni, Fng) at each

pixel point (i, j):
(o w) (7)) = (Fali) <41>

with
aygn = D-— 7“2(6\/?121'1 —1)(1- e_‘/jlzil),
alpy = —rg(eﬁzil —1)(1 - e_ﬁzf),
as = —rg(e‘/jlzﬂz' -1 - eiﬁzil),
asx, = D — rg(e‘/jlzf' -1 - e_ﬁzfz'),
and
hi(i,j) = (D —rsp*)(i,j)na (i, ) — Of (raq + X2)(i, §) — (A3 — r3lp|) (i, 5)p1 (i, 5)
ha(i,j) = (D —rslp*)(i, j)n2(i, j) — 05 (raq + A2)(i,§) — (A3 — 73]p]) (i, )p2(is ).

Notice that the determinant of the above 2 x 2 matrix equals to D? —2Drs(cos 2} + cos zjg -

2) > 0. One can easily solve the above system to get Fn; and Fno and then apply the
discrete inverse Fourier transform to find the new updated n = (ng, n2).

As for the update of the variable p for each iteration, in general, one needs to solve the
equation (18). In this work, we employ the Newton’s method with an initial 6 that was
discussed in Remark 3.2, that is, 0 satisfies [cos,sinf] = a/|a] with a being the vector
defined in the function g(x) (Eq. 17) or 6 is the angle defined in Eq. (22).

As for the variable ¢, we first calculate ¢* and then get the updated ¢ as follows:

F0.d) = Ormling)+dpmaling) - 222,
and
R PO T )) o
i) = {0~ e S ) 2

with |p(i, j)| = v/p1(i, j) + P30, 5)-
The two scalar variables ¢; and ¢o can be easily updated according to Eqs. (25) and (26)
respectively. Moreover, we update all the Lagrangian multipliers as follows:

5 = AL + el 5) — 07 (i, 5)),
15Y@5) = AS(L4) + rip2(i, 5) — 0F 6(i, §)),
5, ) = X340, 5) + ralq(i, 5) — 07 (i, ) — Oy mali, 5))
55(00) = MY+ rs(lp(i, 4)Ina (i, 5) — pa(i, §)),
550(i,5) = M5'(4.4) + r3(|p(d, ) |na(i, ) — p2(i, 5)),
where A1 = (A11, A12) , Az = (A31, As2).
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5 Numerical Experiments

In this section, numerical results are presented to validate the features of the Euler’s elastica
based segmentation model by applying the proposed ALM. Besides being capable of cap-
turing convex contours, the proposed ECV-L! segmentation model also encompass other
interesting features — data and shape driven properties. The shape driven property is a new
feature that has never been discussed for conventional segmentation models in the literature
to our knowledge.

For each experiment, to monitor whether the iterative process using the proposed ALM
converges to a saddle point of the Lagrangian functional (9), as in [39, 45], we calculate the
following relative residuals:

1

(R’faR§7R§) = @(|ﬁ]f’L17|ﬁ§’Ll7|§§’Ll)a (43)

with

RE = |p*n* - p",
where | - |71 is the Ll-norm on Q and |Q] is the area of the domain. The relative residuals
(43) can be used as the stopping criterion for the process, that is, given a small threshold

e, > 0, once Rf < €. for i = 1,2, 3 and for some k, the iteration process will be terminated.
For the purpose of convergence checking, we also track the relative errors of the Lagrange

multipliers:
(LE, LK LK) = M= AT AS = A5 T Y - (44)
12, H3) — )\k—l ) Ak_l ) )\k—l )
AT Ay A3 [
and the relative error of the iterate ¢*
‘qbk - qbk_l’Ll (45)
|pF =t

For the purpose of presentation, all the above quantities are shown in log-scale in the
following results. Moreover, in all the experiments in this work, fixed parameters include
e =1.0,6, = 6, = 1072, And for the convenience of choosing parameters, the value of each
input image f is scaled inside [0, 1] by dividing by 255.

5.1 Data and shape driven properties of the proposed model

We first consider a synthetic image inside which there are a few different geometric shapes
as shown in Fig. 2. In the first row inside this image, geometric shapes include: a diamond,
a staircase-like shape, and a square, two of which are convex shaped while the middle one
is not convex. These three regions are chosen to have the same area purposely.

First, from the plots, one can see that as the model parameter b for curvature increases
while fixing all the other parameters, objects of smaller sizes are omitted in the final seg-
mentation contour. This suggests a data driven property of the proposed model, that is,
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the model ignores objects of relatively small sizes while only keeping bigger ones. This
feature is also possessed by other models for image denoising, such as the T'V-L1 image
denoising model [9] and the mean-curvature denoising model [43]. In fact, it is very natural
for the proposed model to assume this feature, since as discussed in Theorem 1, each closed
segmentation contour I' leads to at least 27 for the term [ |s|ds, and if the region enclosed
by I' is relatively small, it will be omitted if this causes a change of the fitting terms that
is less than 2.

Secondly, from these plots, especially the middle in the second row, one observes that the
staircase-like shape is taken out from the final segmentation contour. Notice that the three
shapes in the first row of the image share the same area, that is, the fitting terms of the model
will treat them equally. Therefore, it is the L'-Euler’s elastica term that separates the two
convex regions from the non-convex one. By the same argument as above, whether a region
is kept in the final segmentation depends on the competition between the fitting terms and
the L'-Euler’s elastica term. This phenomenon also suggests a new shape driven property
of the model, that is, it prefers objects of convex shapes. To the best of our knowledge, no
discussion about this property has been given for other segmentation models, such as the
Mumford-Shah model [30], the Caselles-Kimmel-Sapiro model [7] or the Chan-Vese model
[8].

From the depicted results, one may also note that as the parameter b increases, the
contour on the “pac-man” (the right on the second row) becomes more and more convex,
since this reduces the L'—Euler’s elastica energy. This observation again illustrates the
effect of the curvature term in the model.

5.2 Experiments for real images and the effect of parameters

In Fig. 3, we apply the model to a real image with a boy wearing a big black hat. This hat
is partially occluded by the boy’s face and neck. Image intensity based models, such as the
Chan-Vese model, generally find the visible part of the hat with a big notch near the boy’s
neck. However, when the proposed segmentation model is applied to this image and with
suitable model and Lagrange parameters, this indentation on the segmentation contour can
be replaced by an almost straight segment in order to form a convex contour as shown in
Fig. 3.

In Fig. 4, we consider another real image inside which there is a mushroom. The
mushroom consists of two parts — a stem and a cap, which form a nonconvex shape. By
applying the proposed model with a relatively large curvature parameter b, one notices that
only the larger cap part is included in the final segmentation, which cannot be achieved by
the conventional intensity based segmentation models.

The above two experiments on real images demonstrate that the proposed segmentation
model promotes convex segmentation contours once the curvature parameter b is chosen
large. Moreover, to get those convex contours, the model may automatically restore missing
or occluded parts or subtract nonconvex parts.

To see how the curvature parameter b affects the result of the segmentation, in Fig. 5 and
Fig. 6, we present the results for the same two experiments with different values of b while
keeping all the other parameters. From these results, one sees that once b is small, just as
expected, the performance of the new model degenerates to that of the original Chan-Vese’s
model. These results also demonstrate that the curvature is captured accurately with the
proposed algorithm.
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Figure 2: The original image (the first row) and the segmentation results (the second row)
with different curvature parameter b. Two features can be observed from these results: 1)
data driven property: as the parameter b increases, objects of relatively small size will be
omitted in the final segmentation; 2) shape driven property: with the same parameter b,
among those objects with equal areas, the one without a convex shape is taken out from the
final segmentation (see the staircase-like shape). In this experiment, the other parameters
are: a = 107%,r; = 50,79 = 20,73 = 5.

Figure 3: The original image and the segmentation result. The result demonstrates that
the invisible part of the hat can be restored by the proposed segmentation model with a
relatively large curvature parameter b. In this experiment, the parameters are a = 1073, b =
80,7’1 = 60, ro = 40,7’3 = 10.
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Figure 4: The original image and the segmentation result. The result shows that only the
“cap” part of the mushroom is captured while the “stem” is omitted in order to form a
convex segmentation contour by the proposed segmentation model with a relatively large
curvature parameter b. In this experiment, the parameters are a = 1074, b = 18,r; =
20,7“2 = 10,7‘3 =5.

Figure 5: The effect of the curvature parameter b on the final segmentation results. One
may observe that the smaller the parameter b is chosen, the more salient the indentation of
the hat would be. In these two experiments, all the other parameters are the same as those
in Fig. 3.
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b=0.1 b=5.0

Figure 6: The effect of the curvature parameter b on the final segmentation results. One
can see that once the parameter b is chosen smaller, larger parts of the stem will be allowed
in the final segmentation. In these two experiments, all the other parameters are the same
as those in Fig. 4.

To check whether the iteration used for the proposed ALM converges to a saddle point of
the augmented Lagrangian functional (Eq. 9), we present the plots of the relative residuals
(Eq. 43), relative errors of the Lagrange multipliers (Eq. 44), and relative error of the
iterative u* (Eq. 45) in Fig. 7. All these plots indicate that a saddle point of the functional
and thus a minimizer of the proposed model (Eq. 5) is approached.

5.3 Reinitialization of the level set function ¢

In the proposed model (Eq. 5), a level set function ¢ is used for locating the segmentation
contours. Differently from the alternative model (Eq. 6) with u € [0, 1], no constraint on
the value of ¢ is imposed. Hence, when a stationary state of the segmentation contour is
attained, that is, the region {¢ > 0} stops evolving, the function ¢ may still keep changing,
even though these updates become smaller and smaller. This is because of the choice of
the smooth regularized version of the Heaviside function (Eq. 9). In fact, in the region
{¢ < 0}, when ¢ — —o0, the term % + %arctan(%) — 0, which decreases the first part of
the fitting term. Similarly, in the region {¢ > 0}, the value of ¢ will keep increasing during
the iterative process. This phenomenon also explains the slow change of the plots of the
relative error of the iterative u* in Fig. 7, even though the set {¢ > 0} is invariant just
after several hundred of iterations.

As discussed previously, the reason of sticking to a level set function, instead of a bi-
nary function, in the model (Eq. 5) is to more accurately capture the mean curvature of
segmentation contours. Indeed, since the level set function ¢ presents a few layers of its
value around its zero level curve, the curvature of segmentation contour can be represented
accurately. Therefore, the above issue that ¢ keeps changing won’t affect the performance
of the model as long as this changing is not abrupt.

However, if the curvature parameter b has to be chosen very large for some applications,
the evolution of ¢ might become more intractable. The well-known procedure called reini-
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Figure 7: The plots of relative residuals (Eq. 43), relative errors in Lagrange multipliers
(Eq. 44), and relative error in u* (Eq. 45) for the two examples "hat” (Left column) and
"mushroom” (Right column). These plots demonstrate the convergence of the iterative

process.
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tialization [34] for ¢ is recommended during the iterative process. This will help rationalize
the values of ¢ around its zero level set so that the mean curvature can be effectively
captured in order to realize the essence of the proposed model.

6 Conclusion

This work described a variational image segmentation model, where the L!-Euler’s elas-
tica energy was used as a regularizer on the segmentation contour. It was shown that
an interesting feature of this new model is the ability to promote segmented regions with
convex shapes. We also developed a novel augmented Lagrangian method for minimizing
the associated functional. Compared with previous work on the L2-Euler’s elastica energy
[39, 44], the proposed algorithm employed fewer Lagrange multipliers, which led to more
direct connections among the variables that described curvature and thus helped to express
the curvature effectively and accurately. Experiments demonstrated that the new segmenta-
tion model could be useful for segmenting objects that were known to have a convex shape.
In case occlusions prevented one from observing the entire object, or the transition with the
background was not clear by the contrast, meaningful results were still obtained due to the
additional convexity information. The experiments also indicated data driven and shape
driven properties of the segmentation model, the latter of which has never been discussed
in the literature for conventional variational segmentation models to our knowledge.
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