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Abstract Graph-based variational methods have recently 
shown to be highly competitive for various classification 
problems of high-dimensional data, but are inherently dif-
ficult to handle from an optimization perspective. This paper 
proposes a convex relaxation for a certain set of graph-based 
multiclass data segmentation models involving a graph total 
variation term, region homogeneity terms, supervised infor-
mation and certain constraints or penalty terms acting on the 
class sizes. Particular applications include semi-supervised 
classification of high-dimensional data and unsupervised 
segmentation of unstructured 3D point clouds. Theoretical 
analysis shows that the convex relaxation closely approxi-
mates the original NP-hard problems, and these observations 
are also confirmed experimentally. An efficient duality-based 
algorithm is developed that handles all constraints on the 
labeling function implicitly. Experiments on semi-supervised 
classification indicate consistently higher accuracies than 
related non-convex approaches and considerably so when 
the training data are not uniformly distributed among the data 
set. The accuracies are also highly competitive against a wide 
range of other established methods on three benchmark data 
sets. Experiments on 3D point clouds acquired by a 
LaDAR in outdoor scenes demonstrate that the scenes can 
accurately be segmented into object classes such as 
vegetation, the ground plane and human-made structures.
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1 Introduction

The graphical framework has become a popular setting for
classification [8,25,92,100–102] and filtering [31,34,63,85,
88,89] of high-dimensional data. Some of the best perform-
ing classification algorithms are based on solving variational
problems on graphs [3,10,14,16,17,25,39,44,45,66,68,82,
86,101]. In simple terms, these algorithms attempt to group
the data points into classes in such a way that pairs of data
points with different class memberships are as dissimilar as
possible with respect to a certain feature. In order to avoid the
computational complexity of working with fully connected
graphs, approximations, such as those based on spectral
graph theory [10,38,66] or nearest neighbors [17,33,68], are
typically employed. For example, [10] and [66] employ spec-
tral approaches along with the Nyström extension method
[36] to efficiently calculate the eigendecomposition of a
dense graph Laplacian.Works, such as [17,24,33,39,68,99],
use the ‘nearest neighbor’ approach to sparsify the graph
for computational efficiency. Variational problems on graphs
have also become popular for processing of 3D point clouds
[30,33,45,55,60,62].

When the classification task is cast as the minimization
of similarity of point pairs with different class membership,
extra information is necessary to avoid the trivial global min-
imizer of value zero where all points are assigned to the same
class. In semi-supervised classification methods, a small set
of the data points are given as training data in advance,
and their class memberships are imposed as hard constraints
in the optimization problem. In unsupervised classification

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10851-017-0713-9&domain=pdf
http://orcid.org/0000-0002-4621-259X


J Math Imaging Vis (2017) 58:468–493 469

methods, one typically enforces the sizes of each class not
to deviate too far from each other, examples including the
normalized cut [78] and Cheeger ratio cut problems [26].

Most of the computational methods for semi-supervised
and unsupervised classification obtain the solution by com-
puting the localminimizer of a non-convex energy functional.
Examples of such algorithms are those based on phase fields
[10] and the MBO scheme [38,65–67]. PDEs on graphs
for semi-supervised classification also include the Eikonal
Equation [30] and tug-of-war games related to the infinity
Laplacian Equation [34]. Unsupervised problems with class
size constraints are inherently the most difficult to handle
from an optimization viewpoint, as the convex envelope of
the problem has a trivial constant function as a minimizer
[16,78,82]. Various ways of simplifying the energy land-
scape have been proposed [17,43,89]. Our recent work [68]
showed that semi-supervised classification problems with
two classes could be formulated in a completely convex
framework and also presented efficient algorithms that could
obtain global minimizers.

Image segmentation is a special classification problem
where the objective is to assign each pixel to a region.
Algorithms based on energy minimization are among the
most successful image segmentation methods, and they have
historically been divided into ‘region-based’ and ‘contour-
based.’

Region-based methods attempt to find a partition of the
image so that the pixels within each region as a whole are as
similar as possible. Additionally, some regularity is imposed
on the region boundaries to favor spatial grouping of the pix-
els. The similarity is usuallymeasured in the statistical sense.
In the simplest case, the pixels within each region should be
similar to themean intensity of each region, as proposed in the
Chan–Vese [23] and Mumford–Shah [71] models. Contour-
based methods [50,93] instead seek the best suited locations
of the region boundaries, typically at locations of large jumps
in the image intensities, indicating the interface between two
objects.

More recently, it has been shown that the combination
of region and contour-based terms in the energy function
can give qualitatively very good results [15,39,48], espe-
cially when non-local operators are used in the contour terms
[30,39,48]. There now exists efficient algorithms for solving
the resulting optimization problems that can avoid getting
stuck in a local minimum, including both combinatorial
optimization algorithms [12,13,53] and more recent convex
continuous optimization algorithms [6,7,15,20,58,75,96–
98]. The latter have shown to be advantageous in several
aspects, such as the fact that they require less memory
and have a greater potential for parallel implementation of
graphics processing units (GPUs), but special care is needed
in case of non-local variants of the differential operators
(e.g., [76]).

Most of the current data segmentation methods [10,14, 
16,17,44,66,68,82] can be viewed as ‘contour-based,’ since 
they seek an optimal location of the boundaries of each 
region. Region-based variational image segmentation models 
with two classes were generalized to graphs for data seg-
mentation in [59] and for 3D point cloud segmentation in 
[59,60,84] in a convex framework. The region terms could be 
constructed directly from the point geometry and/or be con-
structed from a color vector defined at the points. Concrete 
examples of the latter were used for experiments on point 
cloud segmentation. Region terms have also been proposed in 
the context of Markov Random Fields for 3D point cloud seg-
mentation [2,72,87], where the weights were learned from 
training data using associate Markov networks. The indepen-
dent preprint [94] proposed to use region terms for multiclass 
semi-supervised classification in a convex manner, where the 
region terms were inferred from the supervised points by dif-
fusion.
Contributions: This paper proposes a convex relaxation and 
an efficient algorithmic optimization framework for a general 
set of graph-based data classification problems that exhibits 
non-trivial global minimizers. It extends the convex approach 
for semi-supervised classification with two classes given in 
our previous work [68] to a much broader range of problems, 
including multiple classes, novel and more practically useful 
incorporation of class size information, and a novel unsuper-
vised segmentation model for 3D point clouds acquired by a 
LaDAR.

The same basic relaxation for semi-supervised classifica-
tion also appeared in the independent preprint [94]. The most 
major distinctions of this work compared to the preprint [94] 
are: we also incorporate class size information in the con-
vex framework; we give a mathematical and experimental 
analysis of the close relation between the convex relaxed 
and original problems; we propose a different duality-based 
‘max-flow’-inspired algorithm; we incorporate information 
of the supervised points in a different way; and we consider 
unsupervised segmentation of 3D point clouds.

The contributions can be summarized more specifically as 
follows:

– We specify a general set of classification problems that
are suitable for being approximated in a convex man-
ner. The general set of problems involves minimization
of a multiclass graph cut term together with super-
vised constraints, region homogeneity terms and novel
constraints or penalty terms acting on the class sizes.
Special cases include semi-supervised classification of
high-dimensional data and unsupervised segmentation of
3D point clouds.

– A convex relaxation is proposed for the general set of
problems, and its approximation properties are analyzed
thoroughly in theory and experiments. This extends the
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work on multiregion image segmentation [6,58,98] to
data clustering on graphs and to cases where there are
constraints or penalty terms acting on the class sizes.
Since the introduction of either multiple classes or size
constraints causes the general problem to become NP-
hard, the relaxation can (probably) not be proved to be
exact. Instead, conditions are derived for when an exact
global minimizer can be obtained from a dual solution of
the relaxed problem. The strongest conditions are derived
in case there are no constraints on the class sizes, but
the theoretical results in both cases show that very close
approximations are expected. These theoretical results
also agree well with experimental observations.

– The convex relaxed problems are formulated as equiv-
alent dual problems that are structurally similar to the
‘max-flow’ problem over the graph. This extends our
work [68] to multiple classes and the work on image seg-
mentation proposed in [95] to data clustering on graphs.
Weuse a conceptually different proof than [68,95],which
relates ‘max-flow’ to another more direct dual formula-
tion of the problem. Furthermore, it is shown that also
the size constraints and penalty term can be incorporated
naturally in the max-flow problem by modifying the flow
conservation condition, such that there should be a con-
stant flow excess at each node.

– As in our previous work [68,95], an augmented
Lagrangian algorithm is developed based on the new
‘max-flow’ dual formulations of the problems. A key
advantage compared to related primal–dual algorithms
[21] in imaging, such as the one considered in the preprint
[94], is that all constraints on the labeling function are
handled implicitly. This includes constraints on the class
sizes, which are dealt with by separate dual variables
indicating the flow excess at the nodes. Consequently,
projections onto the constraint set of the labeling func-
tion, which tend to decrease the accuracy and put strict
restrictions on the step sizes, are avoided.

– We propose an unsupervised segmentation model for
unstructured 3D point clouds acquired by a LaDAR
within the general framework. It extends the models
of [59,60,84] to multiple classes and gives concrete
examples of region terms constructed purely based on
geometrical information of the unlabeled points, in order
to distinguish classes such as vegetation, the groundplane
and human-made structures in an outdoor scene. We also
propose a graph total variation term that favors alignment
of the region boundaries along ‘edges’ indicated by dis-
continuities in the normal vectors or the depth coordinate.
In contrast to [2,41,72,87], our model does not rely on
any training data.

– Extensive experimental evaluations on semi-supervised
classification indicate consistently higher accuracies than
related local minimization approaches, and considerably

so when the training data are not uniformly distributed
among the data set. The accuracies are also highly com-
petitive against awide range of other establishedmethods
on three benchmark data sets. The accuracies can be
improved further if an estimate of the approximate class
sizes are given in advance. Experiments on 3D point
clouds acquired by a LaDAR in outdoor scenes demon-
strate that the scenes can accurately be segmented into
object classes such as vegetation, the ground plane and
regular structures. The experiments also demonstrate
fast and highly accurate convergence of the algorithms,
and show that the approximation difference between
the convex and original problems vanishes or becomes
extremely low in practice.

Organization: This paper starts by formulating the general 
set of problems mathematically in Sect. 2. Section 3 formu-
lates a convex relaxation of the general problem and analyzes 
the quality of the relaxation from a dual perspective. Sec-
tion 4 reformulates the dual problem as a ‘max-flow’ type 
of problem and derives an efficient algorithm. Applications 
to semi-supervised classification of high-dimensional data 
are presented in Sect. 5.1, and applications to segmentation 
of unstructured 3D point clouds are described in Sect. 5.2, 
including specific constructions of each term in the general 
model. Section 5 also presents a detailed experimental eval-
uation for both applications.

2 Data Segmentation as Energy Minimization
Over a Graph

Assume we are given N data points in RM . In order to for-
mulate the segmentation of the data points as a minimization 
problem, the points are first organized in an undirected graph. 
Each data point is represented by a node in the graph. The 
edges in the graph, denoted by E , consist of pairs of data 
points. Weights w(x, y) on the edges (x, y) ∈ E measure 
the similarity between data points x and y. A high value of 
w(x, y) indicates that x and y are similar and a low value 
indicates that they are dissimilar. A popular choice for the 
weight function is the Gaussian

w(x, y) = e− d(x,y)2

σ2 , (1)

where d(x, y) is the distance, in some sense, between x and
y. For example, the distance between two 3D points x and
y is naturally their Euclidean distance. In order to reduce
the computational burden of working with fully connected
graphs, one often only considers the set of edges where
w(x, y) is largest. For instance, edges may be constructed
between each vertex in V and its k-nearest neighbors. More

123



J Math Imaging Vis (2017) 58:468–493 471

formally, for each x ∈ V , one constructs an edge (x, y) ∈ E
for the k points with the shortest distance d(x, y) to x . Such
a graph can be constructed efficiently by using kd trees in
O(Nk log(Nk)) time [9,46]. Note that the number of edges
incident to some nodes in the resulting graph may be larger
than k, as illustrated in Fig. 2 where k = 2, due to symmetry
of the undirected graph. The construction of the graph itself
provides a basic segmentation of the nodes; for instance in
Fig. 2, it can be observed that the graph contains three dif-
ferent connected components. This fact has been exploited
in basic graph-based classification methods [1].

In several recent works, the classification problem has
been formulated as finding an optimal partition {Vi }ni=1 of
the nodes V in the graph G. The most basic objective func-
tion can be formulated as

min
{Vi }ni=1

n∑

i=1

∑

(x,y)∈E :
x∈Vi , y /∈Vi

w(x, y), (2)

s.t. ∪n
i=1 Vi = V , Vk ∩ Vl = ∅ , ∀k �= l , (3)

where the constraint (3) imposes that there should be no vac-
uum or overlap between the subsets {Vi }ni=1. If n = 2, then
(2) is the so-called graph cut [69]. The motivation behind the
model (2) is to group the vertices into classes in such a way
that pairs of vertices with different class memberships are as
dissimilar as possible, indicated by a low value of w.

2.1 Size Constraints and Supervised Constraints

Extra assumptions are necessary to avoid the trivial global
minimizer of (2), where Vi = V for some i and Vj = ∅ for
all j �= i . There are two common ways to incorporate extra
assumptions. In semi-supervised classification problems, the
class membership of a small set of the data points is given as
training data in advance by the constraints

Vi ⊇ Ti , i ∈ I = {1, ..., n}, (4)

where Ti is the set of ‘training’ points known to belong to
class i . For notational convenience, the set of all class indices
{1, ..., n} is denoted by I in the rest of this paper.

In unsupervised classification problems, one usually
assumes that the regions should have approximately equal
sizes. The simplest way to achieve this is to impose that each
class Vi should have a given size ai ∈ N:

||Vi || = ai , i ∈ I, (5)

where
∑n

i=1 ai = ||V ||. We focus on the case that the norm
||Vi || is the number of nodes in Vi for simplicity. As an alter-
native, ||Vi || could be the sum of degrees of each node in Vi ,
where the degree of a node is the number of edges incident

to that node. If size constraints are introduced, the problem
cannot generally be solved exactly due to NP-hardness. This
will be discussed in more detail in Sect. 3.

Usually, a more flexible option is preferred of modify-
ing the energy function such that partitions of equal sizes
have lower energy. In case of two classes, the energy (2)
becomes cut(V1, V2) = ∑

x,y w(x, y), where x ∈ V1 and
y ∈ V2. Several different ways of normalizing the energy by
the class sizes have been proposed, which can be summarized
as follows

cut(V1, V2)

(
1

|V1| + 1

|V2|
)

,
cut(V1, V2)

min(|V1|, |V2|) . (6)

The expression on the left is called the ratio cut in case of
the norm |V | = ∑

x∈V and the normalized cut in case of
|V | = ∑

x∈V degree(x). The expression on the right is called
the Cheeger ratio cut with the norm |V | = ∑

x∈V .
The energy functions (6) are highly non-convex, but ways

to simplify the energy landscape have been proposed [16,17,
44,82] in order to reduce the number of local minima.

2.2 New Flexible Constraint and Penalty Term on Class
Sizes

In this paper, we aim to provide a broader set of constraints
and penalty terms acting on the class sizes that can be handled
in a completely convexmanner. They are designed to achieve
the same net result as the ratio energies (6) of promoting
classes of equal sizes, but in a completely convex way. They
can also promote any other size relations between the class
sizes. We will consider flexible size constraints of the form

S�
i ≤ ||Vi || ≤ Sui , i ∈ I, (7)

where Sui ∈ N is an upper bound on the size of class i and
S�
i ∈ N is a lower bound. Such types of constraints have

previously been proposed for image segmentation in [52].
In case one only knows an estimate of the expected class
sizes, such constraints can be used to enforce the sizes to lie
within some interval of those estimates. To be well defined, it
is obviously required that

∑n
i=1 S

�
i ≤ ||V || and ∑n

i=1 S
u
i ≥

||V ||. Note that if S�
i = Sui = ai , then (7) becomes equivalent

to (5).
To avoid imposing absolute upper and lower bounds on

the class sizes, we also propose appending a piecewise lin-
ear penalty term

∑n
i=1 Pγ (||Vi ||) to the energy function (2),

defined as

Pγ (||Vi ||) =
⎧
⎨

⎩

0 if S�
i ≤ ||Vi || ≤ Sui

γ
(||Vi || − Sui

)
if ||Vi || > Sui

γ
(
S�
i − ||Vi ||

)
if ||Vi || < S�

i

(8)
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Fig. 1 Illustration of penalty term Pγ (Vi )

An illustration of Pγ (||Vi ||) is given in Fig. 1. In the limit
as γ → ∞, the penalty term becomes an equivalent rep-
resentation of the hard constraints (7). Note that quadratic
or higher-order penalty terms, although they are convex, are
not well suited for the convex relaxation, because they tend
to encourage non-binary values of the labeling functions. In
fact, we believe the set of constraints and penalty terms given
here is completewhen it comes to being suited for completely
convex relaxations.

One major contribution of this paper is an efficient algo-
rithmic framework that handles size constraints of the form
(7) and the penalty term (8) naturally, with almost no addi-
tional computational efforts.

2.3 Region Homogeneity Terms

The classification problem (2) involves the minimization of
an energy on the boundary of the classes. The energy is min-
imized if the data points on each side of the boundary are
as dissimilar as possible. These classification models are
therefore similar to edge-based image segmentation mod-
els, which align the boundary of the regions along edges
in the image where the intensity changes sharply. By con-
trast, region-based image segmentation models, such as the
‘Chan–Vese’model, use region homogeneity terms thatmea-
sure how well each pixel fits with each region, in the energy
function.

A graph extension of variational segmentation problems
with two classes was formulated in [59,60,62,84], using a
non-local total variation term togetherwith a region termpro-
motinghomogeneity of a vertex function. Thevertex function
could be constructed directly from point geometry and/or
from external information such as a color vector defined at
each point.We extend the general problem tomultiple classes
and optional constraints as follows:

min
{Vi }ni=1

n∑

i=1

∑

x∈Vi
fi (x) +

n∑

i=1

∑

(x,y)∈E :
x∈Vi , y /∈Vi

w(x, y) ,

s.t. ∪n
i=1 Vi = V , Vk ∩ Vl = ∅ , ∀k �= l (9)

Fig. 2 Example of segmentation of a graph of 2D points (with number
of neighbors k = 2) into regions of low density (yellow), high degree of
correlation of coordinates between neighboring points (red), medium
correlation (blue) and low correlation (green). Dashed edges indicate
those that contribute to the energy (Color figure online)

under optional supervised constraints (4) and/or size con-
straints (7)/penalty term (8). In [59,60,62,84], the region
terms fi (x) were defined in terms of a general vertex func-
tion f 0, which could depend on a color vector or the point
geometry. Experimental results on point clouds were shown
in case f 0 was a color vector defined at each point. In this
work, we will give concrete constructions of fi for point
cloud segmentation purely based on the geometry of the 3D
points themselves. For example, the eigenvalues and eigen-
vectors obtained from a local PCA around each point carry
useful information for describing the homogeneity within
each class. Concrete examples are given in Sect. 5.2. An
illustrative example is given in Fig. 2, where each node is
a 2D point and the region terms have been constructed to
distinguish points with different statistical relations to their
neighboring points.

The independent preprint [94], proposed to use region
terms in the energy function for semi-supervised classifi-
cation and the authors, proposed a region term that was
inferred from the supervised points by diffusion. In con-
trast, the region terms in this work do not rely on any
supervised points, but are as mentioned only specified and
demonstrated for the application of 3D point cloud segmen-
tation.

3 Convex Relaxation of Minimization Problem and
Analysis Based on Duality

In this section, the classification problems are formulated as
optimization problems in terms of binary functions instead
of sets. The binary representations are used to derive convex
relaxations. First, some essential mathematical concepts are
introduced, such as various differential operators on graphs.
These concepts are used extensively to formulate the binary
and convex problems and the algorithms.
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3.1 Differential Operators on Graphs

Our definitions of operators on graphs are based on the theory
in [33,42,91]. More information is found in these papers.

Consider two Hilbert spaces, V and E , which are associ-
ated with the sets of vertices and edges, respectively, and the
following inner products and norms:

〈u, γ 〉V =
∑

x∈V
u(x)γ (x)d(x)r ,

〈ψ, φ〉E = 1

2

∑

x,y∈V
ψ(x, y)φ(x, y)w(x, y)2q−1,

‖u‖V = √〈u, u〉V =
√∑

x∈V u(x)2d(x)r ,

‖φ‖E =√〈φ, φ〉E =
√
1

2

∑
x,y∈V φ(x, y)2w(x, y)2q−1,

‖φ‖E,∞ = max
x,y∈V |φ(x, y)|, (10)

for some r ∈ [0, 1] and q ∈ [ 12 , 1]. Above d(x) is the degree
of node x (it’s number of incident nodes) and w(., .) is the
weighting function.

From these definitions,we can define the gradient operator
∇ and the Dirichlet energy as

(∇u)w(x, y) = w(x, y)1−q(u(y) − u(x)), (11)
1

2
‖∇u‖2E = 1

4

∑

x,y∈V
w(x, y) (u(y) − u(x))2 . (12)

We use the equation 〈∇u, φ〉E = −〈u, divw φ〉V to define
the divergence:

(divw φ)(x) = 1

2d(x)r
∑

y∈V
w(x, y)q(φ(x, y) − φ(y, x)),

(13)

where we have exploited symmetry w(x, y) = w(y, x) of
the undirected graph in the derivation of the operator.

Using divergence, a family of total variations T Vw : V →
R can now be defined:

T Vw(u) = sup
{〈divw φ, u〉V : φ ∈ E, ‖φ‖E,∞ ≤ 1

}

= 1

2

∑

x,y∈V
w(x, y)q |u(y) − u(x)|. (14)

The definition of a family of graph Laplacians �w =
divw ∇̇ : V → V is:

(�wu)(x) =
∑

y∈V

w(x, y)

d(x)r
(u(y) − u(x)). (15)

3.2 Binary Formulation of Energy Minimization
Problem

Apartition {Vi }ni=1 ofV satisfying the no vacuumandoverlap
constraint

∪n
i=1 Vi = V , Vk ∩ Vl = ∅, ∀k �= l (16)

can be described by a binary vector function u = (u1, ..., un)
: V �→ {0, 1}n defined as

ui (x) :=
{
1, x ∈ Vi
0, x /∈ Vi

, i = 1, . . . , n . (17)

In other words, u(x) = ei if and only if x ∈ Vi , where ei
is the unit normal vector which is 1 at the i th component
and 0 for all other components. The no vacuum and overlap
constraint (16) can be expressed in terms of u as

n∑

i=1

ui (x) = 1 , ∀x ∈ V . (18)

Moreover, note that the minimization term of (2) can be
naturally related to total variation (14) for q = 1. In fact,

n∑

i=1

∑

(x,y)∈E :
x∈Vi , y /∈Vi

w(x, y) =
n∑

i=1

T Vw(ui ). (19)

This connection between the two terms was used in several
recent works to derive, utilizing the graphical framework,
efficient unsupervised algorithms for clustering. For exam-
ple, [16,89] formulate rigorous convergence results for two
methods that solve the relaxed Cheeger cut problem, using
non-local total variation. Moreover, [82] provides a contin-
uous relaxation of the Cheeger cut problem, and derives an
efficient algorithm for finding good cuts. The authors of [82]
relate theCheeger cut to total variation and then present a split
Bregman approach of solving the problem. In [88] the con-
tinuum limit of total variation on point clouds was derived.

The general set of problems (9) can now be formulated in
terms of u as

min
u∈B

EP (u) =
n∑

i=1

∑

x∈V
Ci (x)ui (x) +

n∑

i=1

T Vw(ui ) (20)

where

B =
{
u : V �→ {0, 1}n,

n∑

i=1

ui (x) = 1, ∀x ∈ V

}
(21)
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is the set of binary functions indicating the partition. The
superscript P stands for ‘primal.’ The optional size con-
straints (7) can be imposed in terms of u as

S�
i ≤ ||ui || ≤ Sui , i ∈ I,

where ||ui || = ∑
x∈V ui (x). The size penalty term (8) can

be imposed by appending the energy function (20) with the
term

∑n
i=1 Pγ (||ui ||).

In case of semi-supervised classification, Ci (x) takes the
form of

Ci (x) = η(x)
n∑

i=1

|ei (x) − u0i (x)|2, (22)

where u0i is a binary function taking the value of 1 in Ti and 0
elsewhere, andη(x) is a function that takes on a large constant
value η on supervised points ∪n

i=1Ti and zero elsewhere. If
η is chosen sufficiently large, it can be guaranteed that the
solution u satisfies the supervised constraints. The algorithm
to be presented in this work does not require the selection
of an appropriate value for the parameter η, as the ideal case
where η = ∞ can be handled naturally without introducing
numerical instabilities.

Region homogeneity terms can be imposed by setting
Ci (x) = fi (x). More generally, region homogeneity terms
and supervised data points can be combined by setting

Ci (x) = η(x)
n∑

i=1

|ei (x) − u0i (x)|2 + fi (x), (23)

The total variation term is defined as in (14) with q = 1.
If the number of supervised points is very low and there is

no additional region term, the global minimizer of (20) may
become the trivial solution where for one of the classes, say
k, uk(x) = 1 everywhere, and for the other classes ui (x) = 1
for supervisedpoints of class i and0 elsewhere.The threshold
tends to occur around less than 2.5% of the points. As in
our previous work [68], this problem can be countered by
increasing the number of edges incident to supervised points
in comparison with other points. Doing so will increase the
cost of the trivial solution without significantly influencing
the desired global minimizer. An alternative, proposed in the
preprint [94], is to create region terms in a preprocessing step
by diffusing information of the supervised points into their
neighbors.

3.3 Convex Relaxation of Energy Minimization Problem

Due to the binary constraints (21), the problem (20) is non-
convex. As in several recent works on variational image
segmentation [6,18,58,61,77,98] and MRF optimization

[2,11,51,54], we replace the indicator constraint set (21) by
the convex unit simplex

B′ =
{
u : V �→ [0, 1]n,

n∑

i=1

ui (x) = 1, ∀x ∈ V

}
.

(24)

Hence, we are interested in solving the following convex
relaxed problem

min
u∈B′ E

P (u) =
n∑

i=1

∑

x∈V
Ci (x)ui (x) +

n∑

i=1

T Vw(ui ). (25)

under optional size constraints (7) or penalty term (8). In
case n = 2 and no size constraints, the relaxation is exact, as
proved for image segmentation in [22,80] and classification
problems on graphs in [59,68]. In case n > 2, the prob-
lem becomes equivalent to a multiway cut problem, which
is known to be NP-hard [28]. In case size constraints are
imposed, the problem becomes NP-hard even when n = 2,
as it becomes equivalent to a knapsack problem [64] in the
special case of no TV term.

In this paper, we are interested in using the convex relax-
ation (25) to solve the original problemapproximately.Under
certain conditions, the convex relaxation gives an exact
global minimizer of the original problem. For instance, it
can be straight forwardly shown that

Proposition 1 Let u∗ be a solution of the relaxed problem
(25), with optional size constraints (7) or penalty term (8).
If u∗ ∈ B, then u∗ is a global minimizer of the original non-
convex problem (20).

Proof Let EP (u) be the energy function defined in (25)
with or without the size penalty term (8). Since B ⊂ B′ it
follows that minu∈B′ EP (u) ≤ minu∈B EP (u). Therefore,
if u∗ = arg minu∈B′EP (u) and u∗ ∈ B it follows that
E(u∗) = minu∈B EP (u). The size constraints (7) can be
regarded as a special case by choosing γ = ∞. ��

If the computed solution of (25) is not completely binary,
oneway to obtain an approximate binary solution that exactly
indicates the class membership of each point is to select the
binary function as the nearest vertex in the unit simplex by
the threshold

uT (x) = e�(x), where � = arg maxi∈I ui (x). (26)

As an alternative to the threshold scheme (26), binary solu-
tions of the convex relaxation (25) can also be obtained from
a dual solution of (25), which has amore solid theoretical jus-
tification if some conditions are fulfilled. The dual problem
also gives insight into why the convex relaxation is expected
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to closely approximate the original problem. This is the topic
of the next section.

3.4 Analysis of Convex Relaxation Through a Dual
Formulation

We will now derive theoretical results which indicate that
the multiclass problem (20) is closely approximated by the
convex relaxation (25). The following results extend those
given in [6] from image domains to graphs. In contrast to
[6], we also incorporate size constraints or penalty terms
in the analysis. In fact, the strongest results given near the
end of the section are only valid for problems without such
size constraints/terms. This observation agrees well with our
experiments, although in both cases very close approxima-
tions are obtained.

We start by deriving an equivalent dual formulation of
(25). Note that this dual problem is different from the ‘max-
flow’ type dual problem on graphs proposed in our previous
work [68] in case of two classes. Its main purpose is theoreti-
cal analysis, not algorithmic development. In fact, its relation
to flow maximization will be the subject of the next section.
Dual formulations on graphs have also been proposed in [45]
for variational multiscale decomposition of graph signals.

Theorem 1 The convex relaxed problem (25) S can equiva-
lently be formulated as the dual problem

sup
q,ρ1,ρ2

∑

x∈V
min
i∈I

(
Ci (x) + (divw qi )(x) + ρ2

i − ρ1
i

)

+
(
ρ1
i S

�
i − ρ2

i S
u
i

)
, (27)

subject to

(q1, ..., qn) ∈ Sn∞, (28)

ρ1
i , ρ

2
i ∈ [0, γ ], i = 1, ..., n, (29)

where the above set of infinity norm spheres is defined as

Sn∞ = {
(q1, ...., qn) : E �→ R

n s.t. ‖qi‖E,∞ ≤ 1 ∀i} .

(30)

No size information is incorporated by choosing γ = 0.
The size penalty term (8) is incorporated by choosing 0 <

γ < ∞. Size constraints (7) are incorporated by choosing
γ = ∞.

Proof By using the definition of total variation (14), the
problem (25) with size penalty term (8) can be expressed
in primal–dual form as

min
u∈B′ sup

q∈Sn∞

n∑

i=1

P(||ui ||)

+
n∑

i=1

∑

x∈V
ui (x) (Ci (x) + (divw qi )(x)) , (31)

where Sn∞ is defined in (30). It will be shown that the size con-
straints (7) or penalty term (8) can be implicitly incorporated
by introducing the dual variables ρ1

i , ρ
2
i ∈ R+, i = 1, .., n

as

min
u∈B′ sup

q∈Sn∞,ρ1,ρ2∈[0,γ ]n
E(u; q, ρ1, ρ2)

=
n∑

i=1

∑

x∈V
ui (x)

{
Ci (x) + (divw qi )(x) + ρ2

i − ρ1
i

}

+
(
ρ1
i S

�
i − ρ2

i S
u
i

)
, (32)

The primal–dual problem (32) satisfies all the conditions of
the mini-max theorem (see, e.g., Chapter 6, Proposition 2.4
of [32]). The constraint sets for q, ρ1, ρ2 and u are compact
and convex, and the energy function E(u, q) is convex l.s.c.
for fixed q and concave u.s.c. for fixed u. This implies the
existence of at least one primal–dual solution (saddle point)
of finite energy value.

For a given u, the terms involving ρ1 and ρ2 can be rear-
ranged as

sup
0≤ρ1

i ≤γ

ρ1
i

(
S�
i −

∑

x∈V
ui (x))

=
{
0 if

∑
x∈V ui (x) ≥ S�

i
γ

(
S�
i − ∑

x∈V ui (x)
)
if

∑
x∈V ui (x) < S�

i
(33)

sup
0≤ρ2

i ≤γ

ρ2
i

( ∑

x∈V
ui (x) − Sui )

=
{
0 if

∑
x∈V ui (x) ≤ Sui

γ
(∑

x∈V ui (x) − Sui
)
if

∑
x∈V ui (x) > Sui

(34)

Consider the above three choices for γ . In case γ = 0, the
class sizes do not contribute to the energy. In case 0 < γ <

∞, the two above terms summed together is exactly equal to
the size penalty term P(||ui ||). In case γ = ∞, the constraint
set on ρ1, ρ2 is no longer compact, but we can apply Sion’s
generalization of the mini-max theorem [79], which allows
either the primal or dual constraint set to be non-compact. It
follows that if the size constraints (7) are not satisfied, the
energywould be infinite, contradicting existence of a primal–
dual solution.
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From the mini-max theorems, it also follows that the inf
and sup operators can be interchanged as follows

min
u∈B′ sup

q∈Sn∞,ρ1,ρ2∈[0,γ ]n
E(u; q, ρ1, ρ2) =

sup
q∈Sn∞,ρ1,ρ2∈[0,γ ]n

min
u∈B′ E(u; q, ρ1, ρ2). (35)

For notational convenience,wedenote the unit simplex point-
wise as

	n+ = {(u1, ..., un) ∈ [0, 1]n :
n∑

i=1

ui = 1} (36)

For an arbitrary vector F = (F1, . . . , Fn) ∈ R
n , observe that

min
(u1,...,un)∈�+

n∑

i=1

ui Fi = min(F1, . . . , Fn) . (37)

Therefore, the inner minimization of (35) can be solved ana-
lytically at each position x ∈ V , and we obtain the dual
problem

sup
q∈Sn∞,ρ1,ρ2∈[0,γ ]n

(
ρ1
i S

�
i − ρ2

i S
u
i

)

+
∑

x∈V
min

u(x)∈�+

n∑

i=1

ui
{
Ci + divw qi + ρ2

i − ρ1
i

}
(x)

= sup
q∈Sn∞,ρ1,ρ2∈[0,γ ]n

(
ρ1
i S

�
i − ρ2

i S
u
i

)

+
∑

x∈V
min
i∈I {Ci (x) + (divw qi )(x) + ρ2

i − ρ1
i }.

��

Assuming a solution of the dual problem q∗, ρ1∗
, ρ2∗

has been obtained, the following theorem characterizes the
corresponding primal variable u∗

Theorem 2 There exists a maximizer q∗, ρ1∗
, ρ2∗

to the
dual problem (27). At the point x ∈ V , let Im(x) = {i1, ..., ik}
be the set of indices such that

Im(x) = arg mini∈I
(
Ci (x) + (divw q∗

i )(x) + ρ2
i
∗ − ρ1

i
∗)

.

(38)

There exists a solution u∗ to the primal problem (25) such
that (u∗; q∗, ρ1∗

, ρ2∗
) is a primal–dual pair. At the point x,

u∗(x) must satisfy

∑

i∈Im (x)

u∗
i (x) = 1 and u∗

j (x) = 0 , j /∈ Im(x). (39)

If the minimizer (38) is unique at the point x ∈ V , then
the corresponding primal solution u∗ at the point x must be
valued

u∗
i (x) =

{
1, if i = Im(x)
0, if i �= Im(x)

, i = 1, . . . , n . (40)

If the minimizer (38) is unique at every point x ∈ V , then
the corresponding primal solution u∗, given by the formula
(40), is an exact global binary minimizer of the original non-
convex problem (20).

Proof Since all conditions of the mini-max theorem [32,79]
are satisfied (c.f. proof of Theorem 1), there must exist a
maximizer q∗, ρ1∗

, ρ2∗
of the dual problem (27) and a min-

imizer u∗ of the primal problem (25) such that (u∗, q∗) is
a solution of the primal–dual problem (31) (see, e.g., [32]).
For arbitrary vectors u ∈ 	n+ and F ∈ R

n , it must hold that∑
i∈I ui Fi ≥ mini∈I Fi . Therefore, at the point x , u∗ must

satisfy

∑

i∈I
u∗
i (x)

(
(Ci + divw q∗

i )(x) + ρ2
i
∗ − ρ1

i
∗)

= min
i∈I

(
(Ci + divw qi )(x) + ρ2

i
∗ − ρ1

i
∗);

otherwise, the primal–dual energy would exceed the dual
energy, contradicting strong duality. The above expression
can be further decomposed as follows

=
∑

i∈Im (x)

u∗
i (x)

(
(Ci + divw q∗

i )(x) + ρ2
i
∗ − ρ1

i
∗)

+
∑

i /∈Im (x)

u∗
i (x)

(
(Ci + divw q∗

i )(x) + ρ2
i
∗ − ρ1

i
∗)

=
⎛

⎝
∑

i∈Im (x)

u∗
i (x)

⎞

⎠min
i∈I

(
(Ci + divw q∗

i )(x) + ρ2
i
∗ − ρ1

i
∗)

+
∑

i /∈Im (x)

u∗
i (x)

(
(Ci + divw q∗

i )(x) + ρ2
i
∗ − ρ1

i
∗)

Since
(
(C j + divw q∗

j )(x) + ρ2
i
∗ − ρ1

i
∗)

(x) > mini∈I
(
(Ci + divw q∗

i )(x) + ρ2
i
∗ − ρ1

i
∗
)(x) for all j /∈ Im(x),

the above can only be true provided
∑

i∈Im (x)u
∗
i = 1 and

u∗
i (x) = 0 for i /∈ Im(x).
If the minimizer Im(x) is unique, it follows directly from

(39) that u∗
i (x) must be the indicator vector (40).

If the minimizer Im(x) is unique at every point x ∈ V ,
then the corresponding primal solution u∗ given by (40) is
contained in the binary setB. By Proposition 1, u∗ is a global
minimizer of (20). ��

It can also be shown that an exact binary primal solution
exists if there are two non-unique minimal components to
the vector
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(C(x) + divw q∗(x) + ρ2∗ − ρ1∗
)

but this result only holds in case there are no constraints
acting on the class sizes.

Theorem 3 Assume that q∗ is a maximizer of the dual prob-
lem (27)with γ = 0, i.e., no class size constraints. If (38) has
at most two minimal components for all x ∈ V , then there
exists a corresponding binary primal solution to the convex
relaxed primal problem (25), which is a global minimizer of
the original non-convex problem (20).

A constructive proof of Theorem 3 is given in “Appendix.”
If the vector (C(x)+divw q∗(x)+ρ2∗ −ρ1∗

) has three or
more minimal components, it cannot in general be expected
that a corresponding binary primal solution exists, reflecting
that one can probably not obtain an exact solution to the
NP-hard problem (20) in general by a convex relaxation.
Experiments indicate that this very rarely, if ever, happens
in practice for the classification problem (20).

As an alternative thresholding scheme, uT can be selected
based on the formula (40) after a dual solution to the convex
relaxation has been obtained. If there are multiple minimal
components to the vector (C + div q∗)(x), one can select
uT (x) to be one for an arbitrary one of those indices, just as
for the ordinary thresholding scheme (26). Experiments will
demonstrate and compare both schemes in Sect. 5.

4 ‘Max-Flow’ Formulation of Dual Problem and
Algorithm

A drawback of the dual model (27) is the non-smoothness
of the objective function, which is also a drawback of the
original primal formulation of the convex relaxation. This
section reformulates the dual model in a structurally similar
way to a max-flow problem, which is smooth and facilitates
the development of a very efficient algorithm based on the
augmented Lagrangian theory.

The resulting dual problem can be seen as a multiclass
variant of the max-flow model proposed in our work [68] for
two classes, and a graph analogue of the max-flow model
given for image domains in [95]. Note that our derivations
differ conceptually from [68,95], because we directly utilize
the dual problem derived in the last section. Furthermore,
the new flexible size constraint (7) and penalty term (8) are
incorporated naturally in the max-flow problem by a modi-
fied flow conservation condition, which indicates that there
should be a constant flow excess at each node. The amount of
flow excess is expressed with a few additional optimization
variables in the algorithm, and they can optimized over with
very little additional computational cost.

4.1 ‘Max-Flow’ Reformulation Dual Problem

Wenowderive alternative dual and primal–dual formulations
of the convex relaxed problem that are more beneficial for
computations. The algorithm will be presented in the next
section.

Proposition 2 The dual problem (27) can equivalently be
formulated as the dual ‘max-flow’ problem:

sup
ps ,p,q,ρ1,ρ2

∑

x∈V
ps(x) +

n∑

i=1

(
ρ1
i S

�
i − ρ2

i S
u
i

)
(41)

subject to, for all i ∈ I ,

|qi (x, y)| ≤ 1, ∀(x, y) ∈ E, (42)

pi (x) ≤ Ci (x), ∀x ∈ V, (43)
(
divw qi − ps + pi

)
(x) = ρ1

i − ρ2
i , ∀x ∈ V, (44)

0 ≤ ρ1
i , ρ

2
i ≤ γ. (45)

Proof By introducing the auxiliary variable ps : V �→ R,
the dual problem (27) can be reformulated as follows

sup
q,ρ1,ρ2

∑

x∈V
min
i∈I

(
Ci (x) + divw qi (x) + ρ2

i − ρ1
i

)

+
n∑

i=1

(
ρ1
i S

�
i − ρ2

i S
u
i

)

subject to, for all i ∈ I,

‖qi‖E,∞ ≤ 1,

0 ≤ ρ1
i , ρ

2
i ≤ γ.

= sup
ps ,q,ρ1,ρ2

∑

x∈V
ps(x) +

n∑

i=1

(
ρ1
i S

�
i − ρ2

i S
u
i

)

subject to, for all i ∈ I,

ps(x) ≤ (Ci + divw qi )(x) + ρ2
i − ρ1

i ∀x ∈ V,

‖qi‖E,∞ ≤ 1,

0 ≤ ρ1
i , ρ

2
i ≤ γ. (46)

By adding another set of auxiliary variables pi : V �→ R,
i = 1, ..., n, the constraints (46) can be formulated as

ps(x) = pi (x) + divw qi (x) + ρ2
i − ρ1

i ,

pi (x) ≤ Ci (x), (47)

for all x ∈ V and all i ∈ I . Rearranging the terms in con-
straint (47), and using the definition of the infinity norm (10),
leads to the ‘max-flow’ model (41) subject to (42)–(45). ��

Problem (41) with constraints (42)–(45) is structurally
similar to a max-flow problem over n copies of the graph G,
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(V1, E1)× ...× (Vn, En), where (Vi , Ei ) = G for i ∈ I . The
aim of the max-flow problem is to maximize the flow from
a source vertex to a sink vertex under flow capacity at each
edge and flow conservation at each node. The variable ps(x)
can be regarded as the flow on the edges from the source to
the vertex x in each of the subgraphs (V1, E1), ..., (Vn, En),
which have unbounded capacities. The variables pi (x) and
Ci (x) can be regarded as the flow and capacity on the edge
from vertex x in the subgraph (Vi , Ei ) to the sink. Constraint
(47) is the flow conservation condition. Observe that in case
of size constraints/terms, instead of being conserved, there
should be a constant excess flow ρ1

i −ρ2
i for each node in the

subgraph (Vi , Ei ). The objective function (41) is a measure
of the total amount of flow in the graph.

Utilizing results from Sect. 3.4, we now show that the
convex relaxation (25) is the equivalent dual problem to the
max-flow problem (41).

Theorem 4 The following problems are equivalent to each
other:

(1) The max-flow problem (41), subject to (42)–(45);
(2) The primal–dual problem:

min
u

sup
ps ,p,q,ρ1,ρ2

{
E(ps, p, q, ρ1, ρ2; u)

=
∑

x∈V
ps(x) +

n∑

i=1

(
ρ1
i S

�
i − ρ2

i S
u
i

)

+
n∑

i=1

∑

x∈V
ui

(
divw qi − ps + pi + ρ2

i − ρ1
i

)
(x)

}

(48)

subject to (42), (43) and (45), where u is the relaxed
region indicator function.

(3) The convex relaxed problem (25)with size constraint (7)
if γ = ∞, size penalty term (8) if 0 < γ < ∞ and no
size constraints if γ = 0.

Proof The equivalence between the primal–dual problem
(48) and the max-flow problem (41) follows directly as ui
is an unconstrained Lagrange multiplier for the flow conser-
vation constraint (47). Existence of the Lagrange multipliers
follows as: (1) (41) is upper bounded, since it is equivalent
to (27), which by Theorem 2 admits a solution, and (2) the
constraints (44) are linear and hence differentiable.

The equivalence between the primal–dual problem (48),
the max-flow problem (41) and the convex relaxed problem
(25) now follows: By Proposition 2 the ‘max-flow’ problem
(41) is equivalent to the dual problem (27). ByTheorem1, the
dual problem (27) is equivalent to the convex relaxedproblem
(25) with size constraints (7) if γ = ∞, size penalty term (8)
if 0 < γ < ∞ and no size constraints if γ = 0. ��

Note an important distinction between the primal–dual
problem (48) and the primal–dual problem (35) derived in
the last section: The primal variable u is unconstrained in
(48). The simplex constraint B′ is handled implicitly. It may
not seem obvious from the proof how the constraints on u
are encoded in the primal–dual problem; therefore, we give
some further insights: For a given primal variable u, the max-
imization with respect to ps of the primal–dual problem (48)
at the point x can be rearranged as

sup
ps (x)

((
1 −

n∑

i=1

ui

)
ps

)
(x)

=
{
0 if

∑n
i=1 ui (x) = 1

∞ if
∑n

i=1 ui (x) �= 1
(49)

If u does not satisfy the sum to one constraint at x , then the
primal–dual energy would be infinite, contradicting bound-
edness from above. In a similar manner, the optimization
with respect to pi can be expressed as

sup
pi (x)≤Ci (x)

ui (x)pi (x) =
{

(uiCi )(x) if ui (x) ≥ 0
∞ if ui (x) < 0.

(50)

which would be infinite if u does not satisfy the non-
negativity constraints. If u(x) = ei , the indicator function
of class i , the value would be Ci (x), which is indeed the
pointwise cost of assigning x to class i .

4.2 Augmented Lagrangian Max-flow Algorithm

This section derives an efficient algorithm, which exploits
the fact all constraints on u are handled implicitly in the
primal–dual problem (48). The algorithm is based on the
augmented Lagrangian theory, where u is updated as a
Lagrange multiplier by a gradient descent step each itera-
tion. Since no subsequent projection of u is necessary, the
algorithm tolerates a wide range of step sizes and converges
with high accuracy. The advantages of related ‘max-flow’
algorithms for ordinary 2D imaging problems over, e.g.,
Arrow–Hurwicz type primal–dual algorithms have been
demonstrated in [5,97].

From the primal–dual problem (48), we first construct the
augmented Lagrangian functional:

Lc =
∑

x∈V
ps +

n∑

i=1

(
ρ1
i S

�
i − ρ2

i S
u
i

)

+
∑

x∈V
ui (x)

(
divw qi − ps + pi + ρ2

i − ρ1
i

)
(x)

− c

2

n∑

i=1

∥∥∥divw qi − ps + pi + ρ2
i − ρ1

i

∥∥∥
2

2
. (51)
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An augmented Lagrangian algorithm for minimizing the
above functional is given below, which involves alternatively
maximizing Lc for the dual variables and then updating the
Lagrange multiplier u.

Note that if there are no constraints on the class sizes,
γ = 0, then ρ1k = ρ2k ≡ 0 for every iteration k. The

algorithm can in this case be simplified by setting ρ1k =
ρ2k ≡ 0 for all k and ignoring all steps involving ρ1 and ρ2.

Algorithm 1

Initialize p1s , p
1, q1, ρ11, ρ21 and u1. For k = 1, ... until

convergence:

• Optimize q flow, for i ∈ I

qk+1
i = arg max|q(e)|≤1 ∀e∈E − c

2

∥∥∥divw q − Fk
∥∥∥
2

2
, (52)

where Fk = psk − pi k + uki
c − ρ2

i
k + ρ1

i
k
is fixed.

• Optimize source flow ps

pk+1
s = arg maxps (x)

∑

x∈V
ps − c

2

∥∥∥ps − Gk
∥∥∥
2

2
, (53)

where Gk = pi k + divw qk+1
i − uki

c + ρ2
i
k − ρ1

i
k+1

is
fixed.

• Optimize sink flow pi , for i ∈ I ,

pk+1
i := arg maxpi (x)≤ Ci (x) ∀x∈V − c

2

∥∥∥pi − Hk
∥∥∥
2

2
,

(54)

where Hk = psk+1 − divw qk+1
i + uki

c − ρ2
i
k + ρ1

i
k
is

fixed.
• Optimize ρ1

i , for i ∈ I ,

ρ1
i
k+1 = arg max0≤ρ1

i ≤γ

∑

x∈V
ρ1
i S

�
i − c

2

∥∥∥ρ1
i − J k

∥∥∥
2

2
,

(55)

where J k = −pk+1
i − divwq

k+1
i + uki

c + pk+1
s − ρ2k

i is
fixed.

• Optimize ρ2
i , for i ∈ I ,

ρ2
i
k+1 = arg max0≤ρ2

i ≤γ

∑

x∈V
−ρ2

i S
u
i − c

2

∥∥∥ρ2
i − Mk

∥∥∥
2

2
,

(56)

where Mk = pk+1
i + divwq

k+1
i − uki

c − pk+1
s − ρ1

i
k+1

is
fixed.

• Update ui , for i ∈ I

uk+1
i = uki

− c (divw qk+1
i − pk+1

s + pk+1
i + ρ2

i
k+1 − ρ1

i
k+1

).

The optimization problem (52) can be solved by a few
steps of the projected gradient method as follows:

qk+1
i = 
W (qi + c∇w(divwq

k
i − Fk)), (57)

Above, 
w is a projection operator which is defined as


W (s(x, y)) = {
s(x, y) if |s(x, y)| ≤ 1,

sgn(s(x, y)) if |s(x, y)| > 1,
(58)

where sgn is the sign function. There are extended conver-
gence theories for the augmented Lagrangian method in the
case when one of the subproblems is solved inexactly; see,
e.g., [35,40]. In our experience, one gradient ascent iteration
leads to the fastest overall speed of convergence.

The subproblems (53) and (54) can be solved by

ps(x) = Gk(x) + 1

c
, (59)

pi (x) = min
(
Hk(x),Ci (x)

)
. (60)

Consider now the subproblems (55) and (56). In case no
constraints are given on ρ1 and ρ2, the maximizers over the
sum of the concave quadratic terms can be computed as the
average of the maximizers to each individual term as

mean

(
−J k + S�

i

c ||V ||

)
, mean

(
−Mk − Sui

c ||V ||
)

,

respectively, for ρ1 and ρ2. Since the objective function is
concave, and the maximization variable is just a constant,
an exact solution to the constrained maximization problem
can now be obtained by a projection onto that constraint as
follows

ρ1
i
k+1 = min

(
max

(
mean

(
−J k + S�

i

c ||V ||

)
, 0

)
, γ

)
,

(61)

ρ2
i
k+1 = min

(
max

(
mean

(
−Mk − Sui

c ||V ||
)

, 0

)
, γ

)
.

(62)
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Algorithm 1 is suitable for parallel implementation on GPU,
since the subproblems at each substep can be solved point-
wise independently of each other using simple floating point
arithmetics. The update formula (57) for q only requires
access to the values of neighboring nodes at the previous iter-
ate. As discussed in Sect. 2, the number of neighbors may
vary for nodes across the graph; therefore, special consid-
erations should be taken when declaring memory. We have
implemented the algorithm on CPU for experimental evalu-
ation for simplicity.

5 Applications and Experiments

We now focus on specific applications of the convex frame-
work. Experimental results on semi-supervised classification
of high-dimensional data are presented in Sect. 5.1. Sec-
tion 5.2 proposes specific terms in the general model (9) for
segmentation of unstructured 3D point clouds and presents
experimental results on LaDAR data acquired in outdoor
scenes. In both cases, we give a thorough examination of
accuracy of the results, tightness of the convex relaxations
and convergence properties of the algorithms.

A useful quality measure of the convex relaxation is to
what extent the computed solution is binary. Proposition 1
indicates that if the computed solution is completely binary, it
is also an exact global minimizer to the original non-convex

problem. Let uk
T
be a thresholding of uk(x) in the sense

that each row of uk is modified to be the closest vertex in
the unit simplex according to the scheme (26). As a quality
measure of the solution uk at each iteration k of Algorithm
1, we calculate the average difference between uk and its

thresholded version uk
T
as follows:

b(uk) = 1

2n||V ||

(
n∑

i=1

∑

x∈V
|ukTi (x) − uki (x)|

)
, (63)

where ||V || is the number of nodes and n is the number of
classes.We call b(uk) the ‘binary difference’ of uk at iteration
k. Naturally, we want b(uk) to become as low as possible as
the algorithm converges.

5.1 Semi-supervised Classification Results

In this section, we describe the supervised classification
results, using the algorithm with and without the size con-
straints (5), (7) or penalty term (8).

We compare the accuracy of the results with respect to
the ground truth. The results are also compared against other
local minimization approaches in terms of the final total vari-
ation energies:

E(u) = 1

2

n∑

i=1

∑

x,y∈V
w(x, y)|ui (x) − ui (y)|,

where n is the number of classes. A lower value of E is better.
The energy contribution from the fidelity term is ignored
because the solution satisfies the supervised constraints by
construction, thus giving zero contribution from those terms.

To compute the weights for the data sets, we use the
Zelnik-Manor and Perona weight function [74]. The func-
tion is defined as:

w(x, y) = exp

(
− d(x, y)2√

τ(x)τ (y)

)
, (64)

where d(x, y) is a distance measure between vertices x and
y, and

√
τ(x) is the distance between vertex x and its Mth

closest neighbor. If y is not among the M-nearest neighbors
of x , then w(x, y) is set to 0. After the graph is computed,
we symmetrize it by setting

w(x, y) = max(w(x, y), w(y, x)).

Here, M is a parameter to be chosen. The weight function
will be defined more specifically for each application.

We run the minimization procedure until the following
stopping criterion is satisfied:

1

||V ||

(
∑

i

∑

x∈V
|ui (x) − uoldi (x)|

)
< δ,

where uold is the u from the previous iteration, and the value
of δ varies depending on the data set (anywhere from 10−12

to 10−10).
All experiments were performed on a 2.4 GHz Intel Core

i2 Quad CPU. We initialize Ci (x) = constant (in our case,
the constant is set to 500) if x is a supervised point of any
class but class i , and 0 otherwise, for all i ∈ I . The variables
u, qi , ρ1

i , ρ
2
i are initialized to zero for all i ∈ I . The variable

ps is initialized to Cn , where n is the number of classes. We
set pi = ps ∀i ∈ I .

In the following,we give details about the setup and results
for each data set, before we draw some general conclusions
in the end.

5.1.1 MNIST

TheMNIST data set [56], affiliatedwith the Courant Institute
of New York University, consists of 70,000 28 × 28 images
of handwritten digits 0 through 9. Some of the images in the
database are shown in Fig. 3. The objective is, of course, to
assign the correct digit to each image; thus, this is a 10-class
segmentation problem.
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Fig. 3 Examples of digits from the MNIST data base

We construct the graph as follows; each image is a node on
a graph, described by the feature vector of 784 pixel inten-
sity values in the image. These feature vectors are used to
compute the weights for pairs of nodes. The weight matrix is
computed using the Zelnik–Manor and Perona weight func-
tion (64)with local scaling using the 8th closest neighbor.We
note that preprocessing of the data is not needed to obtain an
accurate classification; we do not perform any preprocessing.
The parameter c used was 0.05.

The average accuracy results over 100 different runs with
randomly chosen supervised points are shown in Table 1 in
case of no size constraints. We note that the new approaches
reach consistently higher accuracies and lower energies than
related local minimization approaches, and that incorpora-
tion of size information can improve the accuracies further.
The computation times are highly efficient, but not quite
as fast as MBO, which only uses 10 iteration to solve the
problem in an approximate manner. The Log10 plots of the
binary difference versus iteration, depicted in Fig. 7, show

that the binary difference converges to an extremely small
number.

The results of the data set are visualized in Fig. 4. For
the visualization procedure, we use the first and the sixth
eigenvector of the graph Laplacian. The dimension of each
of the eigenvectors is N × 1, and each node of the data set
is associated with a value of each of the vectors. One way to
visualize a classification of a data set such as MNIST, which
consists of a collection of images is to plot the values of
one eigenvector of the graph Laplacian versus another and
use colors to differentiate classes in a given segmentation.
In this case, the plots in Fig. 4 graph the values of the first
versus the sixth eigenvector (of the graph Laplacian) relating
to the nodes of class 4 and 9 only. The blue and red region
represents nodes of class 4 and 9, respectively. The green
region represents misclassified points.

Moreover, we compare our results to those of other meth-
ods in Table 1, where our method’s name is written in bold.
Note that algorithms such as linear and nonlinear classifiers,
boosted stumps, support vector machines and both neural
and convolution nets are all supervised learning approaches,
which use around 60, 000 of the images as a training set (86%
of the data) and 10, 000 images for testing. However, we use
only 3.57% (or less) of our data as supervised training points,
and obtain classification results that are either competitive or
better than those of some of the best methods. Moreover,
note that no preprocessing was performed on the data, as
was needed for some of the methods we compare with; we
worked with the raw data directly.

Fig. 4 MNIST results. These graphs visualize the values of the first
versus the sixth eigenvector (of the graph Laplacian) relating to the
nodes of class 4 and 9 only. The blue and red region represents nodes
of class 4 and 9, respectively. The green region represents misclassified

points. a Ground truth; b proposed result (randomly selected supervised
points); c proposed result (non-randomly selected supervised points);
d MBO result (randomly selected supervised points); e MBO result
(non-randomly selected supervised points) (Color figure online)
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Fig. 5 Three moons results. a Ground truth; b proposed result c MBO
result

5.1.2 Three Moons Data Set

We created a synthetic data set, called the three moons data
set, to test our method. The set is constructed as follows.
First, consider three half circles in R2. The first two half top
circles are unit circles with centers at (0, 0) and (3, 0). The
third half circle is a bottom half circle with radius of 1.5 and
center at (1.5, 0.4). A thousand points from each of the three
half circles are sampled and embedded in R

100 by adding
Gaussian noise with standard deviation of 0.14 to each of
the 100 components of each embedded point. The goal is
to segment the circles, using a small number of supervised
points from each class. Thus, this is a 3-class segmentation
problem. The noise and the fact that the points are embedded
in high-dimensional space make this difficult.

We construct the graph as follows; each point is a node on
a graph, described by the feature vector consisting of the 100
dimensions of the point. To compute the distance component
of the weight function for pairs of nodes, we use these feature
vectors. The weight matrix is computed using the Zelnik–
Manor and Perona weight function (64) with local scaling
using the 10th nearest neighbor. The parameter c was 0.1.

The results of the data set are visualized in Fig. 5, and
the accuracies are shown in Table 1. This is the only data set
where the proposed approach got lower accuracy thanMBO.
For this particular example, the global minimizer does not
seem the best in terms of accuracy, which is a fault of the
model rather than an optimization procedure.

5.1.3 COIL

We evaluated our performance on the benchmark COIL data
set [25,73] from the Columbia University Image Library.
This is a set of color 128× 128 images of 100 objects, taken
at different angles. The red channel of each image was down-

sampled to 16× 16 pixels by averaging over blocks of 8× 8
pixels. Then, 24 of the objects were randomly selected and
then partitioned into six classes. Discarding 38 images from
each class leaves 250 per class, giving a data set of 1500 data
points and 6 classes.

We construct the graph as follows; each image is a node on
a graph.We apply PCA to project each image onto 241 princi-
pal components; these components form the feature vectors.
The vectors are used to calculate the distance component
of the weight function. The weight matrix is computed using
theZelnik–Manor andPeronaweight function (64)with local
scaling using the 4th nearest neighbor. The parameter c used
was 0.03.

Resulting accuracies are shown in Table 1, indicating that
our method outperforms local minimization approaches and
is comparable to or better than some of the other best existing
methods. The results of the data set are visualized in Fig. 6;
the procedure used is similar to that of the MNIST data set
visualization procedure. The plots in the figure graph the
values of the first versus the third eigenvector of the graph
Laplacian. The results of the classification are labeled by
different colors.

5.1.4 Landsat Satellite Data Set

We also evaluated our performance on the Landsat Satellite
data set, obtained from the UCI Machine Learning Reposi-
tory [4]. This is a hyperspectral data set which is composed of
sets of multispectral values of pixels in 3 × 3 neighborhoods
in a satellite image; the portions of the electromagnetic spec-
trum covered include near-infrared. The goal is to predict the
classification of the central pixel in each element of the data
set. The six classes are red soil, cotton crop, gray soil, damp
gray soil, soil with vegetation stubble and very damp gray
soil. There are 6435 nodes in the data set.

We construct the graph as follows. The UCIWeb site pro-
vides a 36-dimensional feature vector for each node. The
feature vectors are used to calculate the distance component
of the weight function. The weight matrix is computed using
theZelnik–Manor andPeronaweight function (64)with local
scaling using the 4th nearest neighbor. The parameter c used
was 0.3.

Table 1 includes comparison of our method to some of
the best methods (most cited in [70]). One can see that our
results are of higher accuracy. We now note that, except the
GL and MBO algorithms, all other algorithms we compare
the Landsat satellite data to are supervised learning methods,
which use 80% of data for training and 20% for testing. Our
method was able to outperform these algorithms while using
a very small percentage of the data set (10%) as supervised
points. Even with 5.6% supervised points, it outperforms all
but one of the aforementioned methods.

123



J Math Imaging Vis (2017) 58:468–493 483

Fig. 6 COIL Results. These graphs visualize the values of the first
versus the third eigenvector of the graph Laplacian. The results of the
classification are labeled by different colors: a Ground truth; b MBO

result (non-randomly selected supervised points); c proposed result
(non-randomly selected supervised points) (Color figure online)

5.1.5 Non-uniform Distribution of Supervised Points

In all previous experiments, the supervised points have been
sampled randomly from all the data points. To test the algo-
rithms inmore challenging scenarios,we introduce somebias
in the sampling of the supervised points, which is also amore
realistic situation in practice. We used two different data sets
for this test: the MNIST data set and the COIL data set.

In the case of the MNIST data set, we chose the super-
vised points non-randomly for digits 4 and 9 only. To obtain
the non-randomness, we allowed a point to be chosen as
supervised only if it had a particular range of values for
the second eigenvector. This resulted in a biased distribu-
tion of the supervised points. The results for this experiment
were the following: For the max-flow algorithm, the over-
all accuracy was 97.734%, while for digits 4 and 9, it was
96.85%. For comparison, the non-convex MBO algorithm
[38] gave an accuracy of 95.60% overall, but 89.71% for
digits 4 and 9. The MBO method was also a bit more
unstable in its accuracy with respect to different distri-
butions of the supervised points. The max-flow algorithm
was very stable, with a very small standard deviation for
a set of accuracies for different supervised point distribu-
tions.

In the case of the COIL data set, we chose the super-
vised points non-randomly for classes 2 and 6. The non-
randomness was achieved in the same way as for the MNIST
data set. The results were the following: The overall accu-
racy of the max-flow was 92.69%, while for classes 2 and 6,
it was 90.89%. The MBO algorithm [38] gave an accuracy
of 83.90% overall, but 77.24% for classes 2 and 6.

These results are summarized in Table 2 and are visualized
in Figs. 4 and 6 for MNIST and COIL data sets, respectively.

5.1.6 Experiments with Size Constraints and Penalty Term

The exact size constraints (5) could improve the accuracies
if knowledge of the exact class sizes are available. However,
it is not realistic to obtain the exact knowledge of the class
sizes in practice, and this was the motivation behind devel-
oping the flexible constraints (7) or the penalty term (8). In

order to simulate the case that only an estimate of the class
sizes are known, we perturb the exact class sizes by a ran-
dom number ranging between 1 and 20 % of ||V ||/n. The
lower and upper bounds in (7) and (8) are centered around
the perturbed class size, and the difference between them is
chosen based on the uncertainty of the estimation, which we
assume to be known. More specifically, denoting the exact
class size ci , the perturbed class size c̃i is chosen as a random
number in the interval [ci − p, ci + p]. In experiments, we
select p as 1, 10 and 20 % of ||V ||/n. The lower and upper
bounds in the flexible size constraint (7) and the penalty
term (8) are chosen as S�

i = c̃i − p and Sui = c̃i + p.
The parameter γ in the penalty term is set to 10 for all data
sets.

We run the algorithm for each choice of p several times
with different random selections of the perturbed class size
c̃i each time. The average accuracies over all the runs for
each choice of p are shown in Table 3. The flexible size
constraints or penalty term improve the accuracy compared
to the case when no size information was given, as shown
in Table 1. Note that the accuracy improves also in cases
of great uncertainty in the class size estimates (p = 20%).
The exact size constraints can be seen to not be suitable in
case knowledge of the exact class sizes are not known, as
imposing them significantly reduces the accuracies in those
cases (Table 4).

5.1.7 Summary of Experimental Results

Experimental results on the benchmark data sets, shown
in Table 1, indicate a consistently higher accuracy of the
proposed convex algorithm than related local minimization
approaches based on theMBO or Ginzburg–Landau scheme.
The improvements are especially significant when the super-
vised points are not uniformly distributed among the data set
as shown in Table 2. On one synthetic data set, ‘threemoons,’
the accuracy of the new algorithm was slightly worse, indi-
cating that the global minimizer was not the best in terms
of accuracy for this particular toy example. Table 5 shows
that the new algorithm reaches the lowest energy on all of
the experiments, further indicating that MBO and Ginzburg–
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Table 1 Accuracy compared to ground truth of the proposed algorithm
versus other algorithms

Method Accuracy (%)

MNIST (10 classes) a

p-Laplacian [19] 87.1

Multicut normalized 1-cut [43] 87.64

Linear classifiers [56,57] 88

Cheeger cuts [82] 88.2

Boosted stumpsa [49,56] 92.3–98.74

Transductive classification [83] 92.6

Tree GL [37] 93.0

k-nearest neighborsa [56,57] 95.0–97.17

Neural/conv. netsa [27,56,57] 95.3–99.65

Nonlinear classifiers* [56,57] 96.4–96.7

SVMa [29,57] 98.6–99.32

GL [38] (3.57% supervised pts.) 96.8

MBO [38] (3.57% supervised pts.) 96.91

Proposed (3.57% supervised pts.) 97.709

Three moons (5% supervised points)

GL [38] 98.4

MBO [38] 99.12

Proposed 98.714

COIL (10% supervised points)

k-nearest neighbors [81] 83.5

LapRLS [8,81] 87.8

sGT [47,81] 89.9

SQ-Loss-I [81] 90.9

MP [81] 91.1

GL [38] 91.2

MBO [38] 91.46

Proposed 93.302

Landsat satellite data set b

SC-SVMb [70] 65.15

SH- SVMb [70] 75.43

S-LSb [70] ) 65.88

Simplex boostingb [70] 86.65

S-LS rbf.b [70] 90.15

GL [38] (10% supervised pts.) 87.62

GL [38] (5.6% supervised pts.) 87.05

MBO [38] (10% supervised pts.) 87.76

MBO [38] (5.6% supervised pts.) 87.25

Proposed (10% supervised pts.) 90.267

Proposed (5.6% supervised pts.) 88.621

Bold values indicate the results of the new algorithm
a Note that some of the comparable algorithms, marked by a, use sub-
stantially more data for training (85.7% at most and 21.4% at smallest)
than the proposed algorithm; see the main text for more information.
b Marked use 80% of the data set for training; see main text for more
information

Table 2 Accuracies in case of non-uniformly distributed supervised
points

Overall (%) Classes 4 and 9 (%)

Proposed, MNIST 97.734 96.85

MBO, MNIST 95.60 89.72

Overall (%) Classes 2 and 6 (%)

Proposed, COIL 92.69 90.89

MBO, COIL 83.90 77.24

Bold values indicate the results of the new algorithm

Table 3 Accuracies for experiments with class size incorporation.

Max size perturbation (p) 1% 10% 20%

MNIST, 3.57% supervised points

Flexible size constraints (7) 97.761 97.725 97.716

Penalty term (8) 97.755 97.739 97.722

Exact size constraints (5) 96.139 70.820 63.660

Three moons

5% supervised points

Flexible size constraints (7) 99.374 98.829 98.750

Penalty term (8) 99.368 98.789 98.718

Exact size constraints (5) 99.108 72.685 66.627

0.6% supervised points

Flexible size constraints (7) 97.833 97.738 97.160

Penalty term (8) 97.848 97.793 97.406

Exact size constraints (5) 97.706 68.956 66.872

COIL

10% supervised points

Flexible size constraints (7) 93.403 93.535 93.527

Penalty term (8) 93.360 93.418 93.325

Exact size constraints (5) 92.990 59.936 55.624

5% supervised points

Flexible size constraints (7) 90.428 90.892 90.730

Penalty term (8) 89.957 90.967 90.712

Exact size constraints (5) 89.931 55.152 54.674

Landsat satellite data set

10% supervised points

Flexible size constraints (7) 90.504 90.397 90.344

Penalty term (8) 90.479 90.371 90.347

Exact size constraints (5) 87.773 67.687 65.757

5% supervised points

Flexible size constraints (7) 89.024 89.022 88.848

Penalty term (8) 89.025 89.018 88.987

Exact size constraints (5) 86.327 60.904 51.276

The exact class sizes are perturbed by a random number within p %
of the size and the accuracies are computed by averaging over multiple
runs. See Sect. 5.1.6 for details

123



J Math Imaging Vis (2017) 58:468–493 485

Table 4 Timing results (in seconds)

MBO [38] GL [38] Proposed

MNIST 15.4 153.1 42.5

3 moons 3.7 3.9 2.7

COIL 1.18 1.19 1.4

Satellite 16.4 23 16.5

Bold values indicate the results of the new algorithm

Table 5 Initial and final energy

Initial energy Final energy
(MBO) [38]

Final energy
proposed

MNIST 225,654 15,196 12,324

3 moons 5982.79 433.19 420.24

COIL 1774.3 24.61 24.18

Satellite 5116.9 221.87 214.95

Bold values indicate the results of the new algorithm

Landau are not able to converge to the global minimum.
Table 1 shows that the accuracies of the proposed algorithm
are also highly competitive against a wide range of other
established algorithms, even when substantially less training
data than those algorithms are being used. Table 3 shows that
that the flexible size constraints (7) and penalty term (8) can
improve the accuracy, if a rough estimate of the approximate
class sizes are given.

The binary difference (63), plotted on log-scale against
the iteration count, is depicted for each experiment in Fig. 7.
For experiments without any size information, the average
binary difference tends to less than 10−16, which is van-
ishingly low and more or less indicates that an exact global
minimizer has been obtained. For experiments with size con-
straints or penalty terms, the binary difference also gets very
low, although not as low. This indicates convergence to at
least a very close approximation of the global minimizer.
These observations agree well with the theoretical results in
Sect. 3.4, where the strongest results were also obtained in
case of no size information.

Note that a lot more iterations than necessary have been
used in the binary difference plots. In practice, the algorithm
reaches sufficient stability in 100–300 iterations. The CPU
times, summerized in Table 4, indicate a fast convergence of
the new algorithm, much faster than GL, although not quite
as fast as the MBO scheme. It must be noted that MBO is an
extremely fast front propagation algorithm that only uses a
few (e.g., 10) iterations, but its accuracy is limited due to the
large step sizes. A deeper discussion on the number of iter-
ations needed to reach the exact solution after thresholding
will be given at the end of the next section on point cloud
segmentation.

Fig. 7 Log10 plot of binary difference b(uk) versus iteration count. a
Algorithmwithout size constraints;b algorithmwithflexible constraints
(7) and penalty term (8) acting on class sizes

5.2 Segmentation of 3D Point Clouds

The energy function (9) that combines region homogene-
ity terms and dissimilarity across region boundaries will
be demonstrated for segmentation of unstructured 3D point
clouds, where each point is a vertex in V . Point clouds arise
for instance through laser-based range imaging or multiple
view scene reconstruction. The results of point cloud seg-
mentation are easy to visualize and the choice of each term
in the energy function will have a clear intuitive meaning
that may be translated to other graph-based classification
problems in the future. We focus especially on point clouds
acquired through the concept of laser detection and rang-
ing (LaDAR) in outdoor scenarios. A fundamental computer
vision task is to segment such scenes into classes of sim-
ilar objects. Roughly, some of the most common object
classes in an outdoor scene are the ground plane, veg-
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etation and human-made ‘objects’ with a certain regular
structure.

5.2.1 Construction of the Energy Function

We construct the graph by connecting each node to its k-
nearest neighbors (kNN) based on the Euclidian distance as
described at the beginning of Sect. 2. In experiments, we
set k = 20. We construct region terms that favor homo-
geneity of geometrical features based on a combination of
point coordinates, normal vectors and variation of normal
vectors. The construction is a concrete realization of the
general region terms introduced in [59,60,84]. We also pro-
pose to use a contour term that favors alignment of the
boundaries of the regions at ‘edges,’ indicated by sharp dis-
continuities of the normal vectors. Our model can be seen as
a point cloud analogue of variational models for traditional
image segmentation that combine region- and edge-based
features in a single energy functional [15,39,48]. In contrast
to the work [2,72,87] our model does not rely on training
data.

Normal vectors in a point cloud can be estimated from
principal component analysis locally around each point, as
in, e.g., [31,55,60]. For each point x ∈ V , let y1, ..., ym

denote the set of neighboring points and define for notational
convenience y0 = x . Define the normalized vectors ȳi =
yi − mean(y0, y1, ..., ym) for i = 0, 1, ...,m and construct
the matrix

Y = [ȳ0 ȳ1 ȳ2...ȳm]. (65)

Letv1(x), v2(x), v3(x)be the eigenvectors andλ1(x), λ2(x),
λ3(x) be the eigenvalues of the correlation matrix YYT . The
first eigenvectorv1(x)points in the direction of least variation
between the points ȳ1, ..., ȳm and the first eigenvalue λ1(x)
indicates the variation along the direction of v1(x).

The variable v1(x) is consequently a discrete estimation of
the normal vector at x and the first eigenvalue λ1(x) indicates
to which extend the normal vectors vary locally around the
point x . If all the points were laying on a plane, then λ1(x)
would be zero and v1(x) would be the normal vector of the
plane.

The region term for region Vi can be constructed to be
small at the point x if the value of λ1(x) is close to the
expected value λi of region i , and be large otherwise. This
can be achieved by requiring the following term to be small

∣∣λ1(x) − λi
∣∣2 , ∀x ∈ V, i = {v, h, g}. (66)

For instance, λ1v , λ1h and λ1g for vegetation, human-made
objects and the ground plane can be estimated from mea-
surements. Note that their particular values depend on
characteristics of the LaDAR, such as the angular scanning

resolution and depth resolution. If an estimate of λi is not
known, λi could be part of the minimization problem in a
similar way to the mean intensity values in the Chan–Vese
model [23].

Furthermore, the region terms can be constructed for dis-
criminating regions where the normal vector are oriented
either parallel with or perpendicular to a specific direction
ni by requiring the following terms to be small, respectively,

−|v1(x) · ni |, |v1(x) · ni |.

For instance, the normal vectors of the ground plane are
expected to point predominantly in the upward direction. The
ground plane can also be characterized by its height, defined
by the x3-coordinate of the points, which is generally lower
than the heights of other objects in the nearby surroundings.
Assuming a rough estimate of the local height of the ground
plane h∗(x) at the point x is known, the fidelity term (9) can
be modified to take into account both normals vectors and
height by requiring the following term to be small

− |v1(x) · ni (x)| + H(x3, h
∗(x)), (67)

where H is an increasing function in x3 and, in addition,
H(h∗(x), h∗(x)) = 0.Wehaveused the termH(x3, h∗(x)) =
θ(x3 − h∗(x)) and simply estimated h∗(x) as the average x3
coordinate of the points in the neighborhood of x .

The weight functionw is constructed to encourage spatial
grouping of the points, and so that it is favorable to align the
border between regions at locations where the normal vec-
tors change from pointing upwards to pointing outwards, i.e.,
where the scene is convex-shaped. On the contrary, locations
where the scene is concave, such as the transition from the
side of buildings to the roof, should be unfavorable for the
region boundaries. Such assumptions can be incorporated by
modifying the Gaussian weight function (1) as follows:

w(x, y) = e− d(x,y)2

σ2
+γ

v13 (y)−v13 (x)
d(x,y) SIGN(y1−x1) (68)

Here v11(x) and v13(x) are the first and third components of
the vector v1(x), and a coordinate system has been assumed
where the positive x1 axis points outwards from the view
direction and the positive x3 axis points upwards. An illus-
tration is given in Fig. 8, where edges at convex parts of the
scene are given a low energy value, marked by the color code
of light blue.

Taking the above information into account, an example
of how the different region terms can be constructed for
the ground plane, human-made structures and vegetation,
respectively, is
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Fig. 8 Illustration of construction of a graph to separate the ground
plane from human-made structures, view point from the side. The edges
are assigned a low energy at convex parts of the scene, marked in light
blue, making it favorable to place the boundary between the regions at
such locations (Color figure online)

fg(x) = (1 − C)
∣∣λ1(x) − λg

∣∣2

+ C
{ − |v1(x) · ng(x)| + H(x2, h

∗(x))
}
. (69)

fh(x) = (1 − C)
∣∣λ1(x) − λh

∣∣2

+ C |v1(x) · ng(x)|, (70)

fv(x) = C
∣∣λ1(x) − λv

∣∣2. (71)

Here, C ∈ (0, 1) is a parameter that balances considerations
between variation and direction/height. In experiments, we
set λg = λh and setC to a low value so that only vegetation is
distinguished from other regions by the value of λ1. In some
experiments, we also use two regions for vegetation with two
different values of λi . This makes it possible to distinguish
different kinds of vegetation, those with leaves or needles
tend to have a lower mean value λi than those without them.
Smoke can also characterized by its irregular surface, and its
region term constructed as (66) with an intermediate value
of λi .

5.2.2 Experiments

Some illustrative experiments are shown in Figs. 9 and 10.
Ordinary photographs of the scenes are shown on the top and
the red rectangles indicate the areas that have been scannedby
the LaDAR. The point clouds have been segmented into three
regions as described above and the results are visualized by
brown color for points assigned to the ground plane region,
green color for points assigned to the vegetation region and
blue color for points assigned to the region of human-made
objects. In Fig. 11, vegetation with and without leaves is
indicated by dark and light green, respectively.

It can be observed that the algorithm leads to consistent
results even though these scenes are particularly challenging
because the tilt and height of the ground plane vary highly
over the scene due to the hilly landscape, and some of the
trees and bushes are completely aligned with and touches the

Fig. 9 a Scanning area of LaDAR. b, c Segmentation of acquired point
cloud, consisting of 93,641 points, into three regions: ground plane
(brown), vegetation (green) and human-made objects (blue). a Scanning
area; b segmentation, view from front; c segmentation, view from top
(Color figure online)

buildings. Note that buildings hidden behind vegetation get
detected since the laser pulses are able to partially penetrate
through the leaves. A misassignment can be observed in the
middle of Fig. 10, where only the roof of one of the buildings
is visible due to occlusions. Since nopoints are observed from
the wall of the building, the roof gets assigned to the ground
plane region. Some large rocks on Fig. 10 also get assigned
to the blue region due to their steep and smooth surfaces
(Fig. 12).

Aswas the case for experiments involving semi-supervised
classification, the approximation errors of the convex relax-
ation practically vanish. Figure 13c depicts the binary differ-
ence (63) as a function of the iteration count in the experiment
shown in Fig. 10. As can be seen, the solution of the convex
relaxation converges to a binary function; after 10,000 itera-
tions, the average binary difference (63) was 5.74 × 10−10.
Note, however, that a lot less iterations are necessary before

123



488 J Math Imaging Vis (2017) 58:468–493

Fig. 10 a Scanning area of LaDAR. b, c Segmentation of acquired
point cloud, consisting of 80,937 points, into three regions: ground
plane (brown), vegetation (green) and human-made objects (blue). a
Scanning area; b segmentation, view from front; c segmentation, view
from top (Color figure online)

the thresholded function stabilizes at the global minimum.
Figure 13 (left) depicts the energy evolution as a function
of the iteration count for the relaxed solution (blue), thresh-
olded solution with scheme (26) (red) and with scheme (40)
(green). Figure 13 (right) depicts a log plot of the absolute

energy precision
||Ei−E∗

relaxed ||
E∗
relaxed

||, where E∗
relaxed is the global

minimum of the relaxed problem, estimated by 10,000 iter-
ations of the algorithm. Ei is the energy at iteration i of
the relaxed solution (blue), thresholded solutionwith scheme
(26) (red) and thresholded solutionwith scheme (40) (green).
This plot demonstrates that the binary solution obtained by
the thresholding scheme (26) stabilizes after about 300 itera-
tions, after which the energy is within 10−16 of the energy of
the ground truth solution of the relaxed problem estimated
at iteration 10,000. The threshold scheme (40) takes more
iterations before stabilizing, but also eventually converges
to the correct solution after about 3500 iterations. The CPU

Fig. 11 Top: Scanning area of LaDAR. Bottom: Segmentation of
acquired point cloud, consisting of 14,002 points, into four regions:
ground plane (brown), and human-made objects (blue), vegetation with
(light green) and without (dark green) leaves/needles (Color figure
online)

times of the experiments were in the range 5–15s on an Intel
i5-4570 3.2 Ghz CPU for point clouds with around 80,000
points. For comparison, the inference step of the relatedMRF
approaches [2,72,87] took around 9 minutes for a scan with
around 30,000 points, as reported in [72], but of course on
older hardware. The proposed algorithm is also suitable for
parallel implementation on GPU as discussed at the end of
Sect. 4.2.

6 Conclusions

Variational models on graphs have shown to be highly com-
petitive for various data classification problems, but are
inherently difficult to handle from an optimization per-
spective, due to NP-hardness except in some restricted
special cases. This work has developed an efficient convex
algorithmic framework for a set of classification problems
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Fig. 12 Top: Scanning area of LaDAR. Bottom: Segmentation of a
point cloud (81,551 points) into smoke (gray), vegetation (green) and
human-made structures (blue). a Scanning area; b segmentation result
(Color figure online)

with multiple classes involving graph total variation, region
homogeneity terms, supervised information and certain con-
straints or penalty terms acting on the class sizes. Particular
problems that could be handled as special cases included
semi-supervised classification of high-dimensional data and
unsupervised segmentation of unstructured 3D point clouds.
The latter involved minimization of a novel energy function
enforcing homogeneity of point coordinate-based features
within each region, together with a term aligning the region
boundaries along edges. Theoretical and experimental analy-
sis revealed that the convex algorithms were able to produce
vanishingly close approximations to the global minimizers
of the original problems in practice.

Experiments on benchmark data sets for semi-supervised
classification resulted in higher accuracies of the new algo-
rithm compared to related local minimization approaches.
The accuracies were also highly competitive against a wide
range of other established algorithms. The advantages of
the proposed algorithm were particularly prominent in case
of sparse or non-uniformly distributed training data. The
accuracies could be improved further if an estimate of the
approximate class sizes were given in advance. Experiments
also demonstrated that 3D point clouds acquired by a LaDAR
in outdoor scenes could be segmented into object classeswith
a high degree of accuracy, purely based on the geometry of
the points and without relying on training data. The compu-
tational efficiency was at least an order of magnitude faster
than related work reported in the literature.

In the future, it would be interesting to investigate region
homogeneity terms for general unsupervised classification
problems. In addition to avoiding the problemof trivial global
minimizers, the region termsmay improve the accuracy com-
pared to models based primarily on boundary terms. Region
homogeneity may, for instance, be defined in terms of the
eigendecomposition of the covariancematrix or graph Lapla-
cian.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix: Proof of Theorem 3

To aid the proof of Theorem 3, we first give the following
lemma, which is a graph extension of Proposition 4 given in
[6] for image domains.

Fig. 13 a, b Energy evolution of u (blue), uT with threshold scheme (26) (red), and uT with threshold scheme (40) (green) for the experiment in

Fig. 10. a Primal energies; b Log of
||Ei−E∗

relaxed ||
E∗
relaxed

; c Binary difference (63) (Color figure online)
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Lemma 1 Assume that for a function u : V �→ [0, 1], q∗
maximizes

q∗ = arg max‖q‖E,∞≤1

∑

x∈V
u(x)(divw q)(x)

Define the thresholded function

uα(x) =
{
1 if u(x) ≥ α

0 otherwise
. (72)

For almost any threshold level α ∈ (0, 1], q∗ also maximizes

q∗ = arg max‖q‖E,∞≤1

∑

x∈V
uα(x)(divw q)(x)

Proof The coarea formula on graphs says that

∑

x∈V
|∇wu(x)| =

∫ 1

0

∑

x∈V
|∇wu

α(x)| dα;

see, for instance, appendix B of [90] for a proof. Together
with the fact that u(x) = ∫ u(x)

0 dα = ∫ 1
0 uα(x)dα, we can

deduce that

∫ 1

0

∑

x∈V
uα(x)(divw q∗)(x) dα

=
∑

x∈V

(∫ 1

0
uα(x) dα

)
(div q∗)(x)

=
∑

x∈V
u(x)(divw q∗)(x)

=
∑

x∈V
|∇wu(x)| =

∫ 1

0

∑

x∈V
|∇wu

α(x)| dα

=
∫ 1

0

(
sup

‖q‖E,∞≤1

∑

x∈V
uα(x)(div q)(x) dα

)
.

Since in general

sup
‖q‖E,∞≤1

∑

x∈V
uα(x)(div q)(x) dα

≥
∑

x∈V
uα(x)(div q∗)(x) dα,

the above equality can only be true provided that

sup
‖q‖E,∞≤1

∑

x∈V
uα(x)(div q)(x)

=
∑

x∈V
uα(x)(div q∗)(x),

for almost every α ∈ (0, 1]. ��

Utilizing Lemma 1, we will now prove Theorem 3:

Proof By the assumptions of the theorem, for a finite number
of connected components in the graph, theminimizer Imin(x)
contains two indices. Assume without loss of generality that
Vk, j ⊂ V is one such connected component where Im(x) =
k, j for all x ∈ Vk, j . That is, for any two nodes x and y in
Vk, j , there is a path of edges (x, z1), (z1, z2), ..., (zn, y) ⊂ E
such that z1, ..., zn ∈ Vk, j .

Let u∗ be any primal solution for which (u∗; q∗) is a
primal–dual pair. By Theorem 2, u∗ must in Vk, j satisfy

u∗
k(x) + u∗

j (x) = 1, u∗
i (x) = 0, for i �= k, j, (73)

For an arbitrary threshold level α ∈ (0, 1) construct the
binary function

uα
k (x) =

{
1 if u∗

k(x) ≥ α

0 otherwise
. (74)

From (73), we can write u∗
j (x) = 1 − u∗

k(x) in Vk, j , and

together with (74) it follows that 1 − uα
k (x) = u1−α

j (x) in
Vk, j .

Construct now the function ut : V �→ R
n as follows:

ut (x) = u∗(x) for x ∈ V \Vk, j (75)

uti (x) =
⎧
⎨

⎩

uα
k (x) if i = k

u1−α
j (x) if i = j

0 if i �= k, j
for x ∈ Vk, j (76)

For the given q∗, we have that

E(u∗, q∗)
=

∑

i∈I

∑

x∈V
u∗
i (x)

{
Ci (x) + (divw q∗

i )(x)
}

=
∑

i∈I\{k, j}

∑

x∈V \Vk, j
u∗
i (x)

{
Ci (x) + (divw q∗

i )(x)
}

+
∑

x∈Vk, j
u∗
k(x)

{
Ck(x) + (divw q∗

k )(x)
}

+
∑

x∈Vk, j
u∗
j (x)

{
C j (x) + (divw q∗

j )(x)
}

=
∑

i∈I\{k, j}

∑

x∈V \Vk, j
u∗
i (x)

{
Ci (x) + (divw q∗

i )(x)
}

+
∑

x∈Vk, j

(
u∗
k(x) + (1 − u∗

k(x))
) {

Ck(x) + (divw q∗
k )(x)

}

=
∑

i∈I\{k, j}

∑

x∈V \Vk, j
u∗
i (x)

{
Ci (x) + (divw q∗

i )(x)
}

+
∑

x∈Vk, j

(
uα
k (x) + (1 − uα

k (x))
) {

Ck(x) + (divw q∗
k )(x)

}
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=
∑

i∈I\{k, j}

∑

x∈V \Vk, j
u∗
i (x)

{
Ci (x) + (divw q∗

i )(x)
}

+
∑

x∈Vk, j
uα
k (x)

{
Ck(x) + (divw q∗

k )(x)
}
,

+
∑

x∈Vk, j
u1−α
j (x)

{
C j (x) + (divw q∗

j )(x)
}
,

= E(ut , q∗) (77)

where we have used that Ck(x) + (divw q∗
k )(x) = C j (x) +

(divw q∗
j )(x) in Vk, j . By applying Lemma 1 on the last two

terms with threshold level α and 1 − α, respectively, it can
be deduced that

sup
q∈Sn∞

E(ut , q) = sup
q∈Sn∞

E(u∗, q) = E(u∗, q∗) = E(ut , q∗)

Consequently (ut , q∗) is an optimal primal–dual pair.
Assume now there is another connected component

V 2
k2, j2

⊂ V where Imin = {k2, j2}. By setting u∗ = ut

and repeating all arguments above, it follows that u∗ can
be thresholded in V 2

k2, j2
to yield a binary minimizer in V 2

k2, j2
.

The same process can be repeated for all connected com-
ponents until a binary minimizer is obtained over the whole
domain V . By Proposition 1, such a binary function is a
global minimizer of the original non-convex problem. ��
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