
1

The final destination:
Building test bed apps for DIL environments

Arild Bergh
Cyber Systems and Electronic Warfare Division

Norwegian Defence Research Establishment (FFI)
Kjeller, Norway

Recent years have seen a massive growth in the everyday use
of smartphones and tablet (here called smart mobile devices or
SMDs) and a turn towards app based software to connect to
cloud based services. This has had a huge impact on how people
access information and communicate in all spheres of life, with
always online now being the default mode for most people. These
changes also affect the military, albeit at a slower pace. Moving
towards a diversified app-architecture for sharing and processing
information has clear operational benefits [1]. However, a key
differentiator between civilian and military contexts is the fact
that in actual operations the military will, at least on the tactical
level, operate on disadvantaged, intermittent and/or limited
(DIL) networks.

The IST-118 working group is exploring solutions to deal with
DIL related issues, and to be able to test these as realistically as
possible could be very beneficial. This paper proposes a possible
solution, the MLAB App Builder developed at the Norwegian
Defence Research Establishment (FFI). MLAB lets non-
developers create SMD apps for Android, iOS, Windows Phones,
etc. simply by using point and click. This means that polished
apps can be created easily, and using built-in facilities for
monitoring of user interaction will help to test everything from
content filtering to offline use. Apps created in MLAB uses an
architecture that allow apps to work on and offline when
connections are intermittent and allow for transparent
connections to external services or local substitutes.

Keywords: app development, test bed, mobile devices,
smartphones, disadvantaged networks, mil-app market

I. INTRODUCTION

We are in the midst of an on-going explosion in the use of
smart mobile devices (SMDs) such as smartphones and tablets.
Currently 1.75 billion people use a smartphone, with numbers
expected to rise to 2.5 billion in 2017 [2], and more than a
billion smart phones were shipped per year in 2013 and 2014
[3]. The percentage of people using a smartphone is rapidly
increasing in most countries, with more than 50% of the
population using them in nine countries [4]. This rapid uptake
has also pushed the price below 30 USD for basic smartphones.
At the same time there are millions of “apps” (the small, task
oriented applications that all SMDs rely on to provide access to
information, communication and services) available to tailor
these generic devices to one’s own taste and needs. In short,

SMDs and apps are currently the default ICT for most people
around the world.

Given that these devices have an array of sensors and
communication methods they are an interesting proposition for
a range of uses, from medicine [5] to emergency situations [6].
This also applies to the military, the idea of using commercial
off the shelf (COTS) resources means that there is a number of
research projects looking into mobile phone use, both on the
end user/app side [7], [8] and the networking side [9], [10].

This is not only an issue of costs, albeit that is a
considerable benefit. For the next generation of military
recruits SMD and app use is the default way of accessing and
sharing information and knowledge. Failing to capitalize on the
skills that younger people build up around these devices will
likely mean a less effective use of information services in the
military.

At the same time “power to the edge” has been a rallying
cry in network based warfare/defence for some time [11]. The
Norwegian military is also moving from a “need-to-know” way
of working, to a “responsibility to share” paradigm. The sharp
end of this change will ultimately play out in the tactical
domain. The combined benefits of low costs devices with a
variety of sensors and communication methods; and the ability
to create apps to act as front-end interfaces to different web
services makes SMDs ideal as a generic starting point for
future gateways to information in a service oriented
architecture (SOA).

A key challenge when trying to use COTS SMDs in the
tactical domain is connectivity issues in so-called
Disadvantaged, Intermittent and/or Limited (DIL) networks
[12]. This is not the only problem; the design of devices (size,
durability) and battery time are examples of other pertinent
issues. However, these can be worked around, whereas
connectivity issues are core to the benefits that can be derived
from SMDs. To provide reliable access to web services in such
environments have been a core issue for many researchers, and
in a summary paper from Johnsen et. al. [13] the different
issues that the protocol stack needs to handle are summed up.

As we can see in Figure I.1 below, the final destination is
“the application” or, in the SMD world, the app. Whereas the
other elements in this stack do not have a (end) user interface,
the app element will ultimately fail or succeed based on user

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/VTCSpring.2015.7146128

2

perception. A failure here, be it through connectivity issues or
other problems, can lead to an excellent underlying stack being
deemed unusable by the end user.

Figure I.1 Adapted from Johnsen et. al. [13, p. 5]

The app(lication) element can therefore benefit greatly from
letting real users at the tactical level test likely scenarios. Such
testing will also uncover any problems with assumptions made
elsewhere about likely data loads, acceptable information
update frequencies, etc.

The problem with such testing is that

• apps can take a lot of resources to create, both time and
money;

• given the fact that it is a test, getting the right level of
polish on the user interface to avoid users being hung up
on rough edges in the app which are not actual problems
during the test period is problematic;

• it can be difficult without considerable preliminary case
studies to be sure that the app fits the way of working
that the tactical domain end users expect.

Together these testing issues can skew the data negatively if
they are not addressed.

Using the MLAB web based app builder developed by the
Sinett 3.0 project at the Norwegian Defence Research
Establishment [14] is one way of building test apps that deal
with all those issues. MLAB also has an internal architecture
that supports DIL environments. This paper will first describe
what MLAB is and how it works. Then it will highlight why
MLAB can be useful for creating test bed apps for researchers
wishing to explore how apps can interact with web services
they create and/or infrastructure testing. Finally, it will examine
the architecture of MLAB to explain how these benefits can be
achieved.

II. MLAB: WHAT IS IT AND HOW DOES IT WORK?

A. Background
MLAB is a complete app development environment that

“anyone” who have used PowerPoint can use. The key impetus
for its development was the emerging requirement to provide
teaching material in a format that new recruits to the
Norwegian army would be familiar with, i.e. apps [15].
However, MLAB is not restricted to learning apps; it is robust

enough to develop any type of app supported by its underlying
languages and the target SMD platforms.

Subsequently we identified the following issues that had to
be addressed:

• Non-programmers (typically instructors) had to be able
to develop these apps without traditional intermediaries
such as programmers and designers. This was both a
cost issue and a “dialogue overhead” issue; i.e. it can be
difficult for a non-programmer to express exactly how
they envisage an app should function to a programmer.
Enabling them to build apps that are “WYSIWYG”
(what you see is what you get) in a web browser by
simply pointing and clicking facilitates experimentation
and immediate feedback as to how well their choices
will work.

• The apps created had to work on different SMD
operating systems, such as Android or iOS.

• End users had to be able to explore the apps being built
in a way that is familiar to them, i.e. we needed an “app
market” similar to the App Store used by iPhones.

B. The MLAB ecosystem

Figure II.1 The MLAB ecosystem: three elements running
as web apps and/or web services.

The entry point is the app editor where the app creator,
typically an instructor or someone who has intimate knowledge
of how a particular task should be performed, builds an app.
Each app is built up of one or more pages whose look and feel
is based on previously created templates. Each page is
constructed by adding predefined building blocks. These
blocks include components that encapsulate functionality such
as chat or mapping; features which turn on certain app-wide
functionality such as usage tracking; and storage plugins for
storing and retrieving information. Each of these elements can
interact with remote web services, but this is not mandatory.

Secondly we have the compiler service which takes pages
from the app builder and compiles them to a standalone app. It
relies on the Cordova open source platform (see
http://cordova.apache.org/) that facilities app development
using HTML5, Javascript and CSS3. These are the three core
web technologies we encounter in everyday web services such
as social media sites or online banking. Cordova gives access
to some of the API functions of the different SMD operating

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/VTCSpring.2015.7146128

http://cordova.apache.org/

3

systems, such as camera or GPS. In addition it creates a native
loading mechanism for the target operating system which,
when compiled, loads the first HTML page in the app in the
SMDs native web page viewer. Afterwards the
HTML/Javascript (and CSS3) code runs on its own, utilizing
the latest interactive features of the different languages. This
loading functionality is what enables the app’s
HTML/Javascript code to run on many different SMD
platforms without having to be re-written (although it has to be
compiled separately for each different operating system).

Finally there is the app market. This is a basic RESTful API
service using NodeJS and MySQL to let app creators upload
apps, and end users search, browse and download apps.
Different front ends can be developed to connect to this API,
such as web pages or native apps on the SMDs. It uses a basic
database for information such as app name, description,
categories, etc.

Together these three elements provide a complete
ecosystem that can be installed on basic webservers with
PHP/NodeJS and MySQL support. These can be a part of the
general Internet, or running on standalone TCP/IP networks.
The app editor is currently being finalized and the compiler and
app market services have been specified and are soon starting a
short development cycle. Once MLAB is completed it is hoped
that it will be possible to open source the entire ecosystem; as it
is based on open source languages and libraries throughout
there are no technical or license problems standing in the way
of this goal.

III. USING MLAB TO CREATE TEST BED APPS

A. Potential benefits
I would suggest that the case for using MLAB to create test

bed apps rests on one rather obvious, but less important benefit,
and some not immediately obvious, but more important
benefits. Clearly the economics are important here, apps can be
developed for free by anyone who is given access to the app
editor. However, more important is the possibility to enhance
the quality of a) test results in the field and b) future research.
This can be achieved through five aspects that are particular to
MLAB, and one that is common to all SMD based apps. The
five aspects all spring from Sinett 3.0’s focus on the socio-
technical aspects of ICT [16]. In short, a socio-technical focus
means that we look at the interaction between people and
technical systems and their behaviour around such systems,
with an equal interest in both elements.

• Firstly, as novices can use MLAB, a researcher’s
“clients” in the military can be partners in developing
the test bed app. This, I believe, will enhance the quality
of the testing in the final part of the protocol stack in
Figure I.1. There is a lot of tacit knowledge underlying
tasks in the military. Tacit knowledge is knowledge that
is so “obvious” to a person that they do not deem it
worthy of mentioning to others [17]. However, such
hidden knowledge is often the key to successfully
completing a task. An example of this can be how
threats in the field are prioritized at the tactical edge. By
letting the clients develop the apps such knowledge will

become a part of the app and is also made visible to the
researcher.

• Secondly, there may be different ways of solving
optimization issues (as discussed by Johnson et. al. [13,
p. 5]), such as content filtering, that the end users can
provide input on during tests. Perhaps an aggressive
content filtering algorithm which makes the overall test
succeed by reducing the network load is actually an
overall failure because the end user is getting too little
information, too late. MLAB test bed apps can therefore
(in)validate test results based on actual tactical domain
use.

• Third, MLABs use of preformatted templates and high
level components makes it easy to develop polished
apps without the rough edges that often characterize test
bed apps. This will help researchers by avoiding users
getting distracted by problems in an app that is
irrelevant to the actual test, but which may still render
the test app useless for the tester. Test users may also,
for instance, mistake problems in the test app for
problems in the network, further complicating the test
results.

• Fourth, access to most types of web services, for
instance those listed in the tactical SOA foundation
services by Johnsen et. al. [13] can be encapsulated as
components in MLAB. This means that high level
experts can use MLAB as a channel for distributing
configurable task oriented components such as service
discovery or messaging.

• Fifth, this component encapsulation means that
additional iterations of a test, even by different teams,
can re-use the component that is embodying the service
connection and enhance it further, if required.

• The final benefit, not specific to MLAB apps, is the
ability to collect, without interrupting the actual use of
the app, contextual data from the sensors of the device.
For instance, in what positions (and hence, what type of
terrain) did users send the most data, when did they
request updates, how often was the device in use (i.e.
screen on) when data arrived from web services, etc.

The first five benefits will of course vary depending on the
scenarios being investigated and the clients one is working
with. However, they are all based on the ability to combine the
skills, knowledge and user experience of non-technical “final
destination” app users in the tactical domain with the technical
know-how of researchers. This can be done in ways that are not
available when apps are created directly by the researchers or
third parties. Furthermore, MLAB created test bed apps allows
us to frame particular experiments within a larger app context.
By this I mean that issues around access to, and sharing of,
information does not happen in isolation, but within a device
usage context, and this is “enabled” by using MLAB to create
custom test bed apps. In summary, the roles and outcomes
when using MLAB to create apps may look something like
what is outlined in the table below.

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/VTCSpring.2015.7146128

4

Table III.1 Who does what, and for what purpose, when
creating an MLAB test bed app?

Actor: Researcher App creator App end user
Stage: Pre app creation App creation time App run time
Task: Create a reusable

component
encapsulating, for
instance, web
service interaction,
including
configuration
options.

Add component to app
being built, set
configuration options.

Interact with
component,
enter/read
information
to/from
device, and
hence a web
service.

Outcome: Testable, re-usable
code linking to test
scenario.

Testing if
configuration options
make sense, and/or if
further settings should
be user defined; see
what other
components are added
to work with the
component being
tested.

“Real-life”
feedback,
more realistic
testing of
scenario.

B. Enabling the potential benefits
The underlying architecture of MLAB, as discussed briefly

in II.B, The MLAB ecosystem, is central to unlocking the
potential benefits of using MLAB to create test bed apps. It is
therefore worth discussing three aspects that will be of
particular interest for researchers working in DIL
environments.

Figure III.1 Outline of the MLAB page architecture

In Figure III.1 Outline of the MLAB page architecture we
see how a component can be anything from a simple heading,
or a more complex, composite HTML5 element which uses
Javascript for user interaction and asynchronous JavaScript
and XML (AJAX) to store data remotely [18], [19]. The
component is what the app creator interacts with; as they
develop an app they select components to add to a page by
clicking on icons in a list, just as text boxes, videos and images
are added to a PowerPoint presentation. A component can (if
required) be written so that it requests configuration parameters
from the app creator at design time, e.g. what server URL to
use. In short, the app creator always works on the level of
components, and need no programming experience. The
component developer however, can make the underlying code
as simple or complex as is required. The component can be

100% Javascript, or pure HTML5 code, or (most often) a
combination of the two, with HTML5 fulfilling the traditional
role of displaying information, and Javascript manipulating it.

There are two other aspects of MLAB that are useful for
test bed app development. The first is of special interest in a
SOA setting, it is the storage plugin. These plugins are
developed just like a component, except they do not have a
visual interface. The idea is that a chat component, for
example, can be developed that has all the interaction elements
required (display chat, enter new text, send button, view
history, start new chat button, etc.). Then the app creator selects
a storage plugin to connect the chat component to a server, this
could be a simple MySQL database with custom code to read
new messages or a complete XMPP server. This gives a lot of
flexibility both for researchers and app creators.

The storage plugins use an internal MLAB API that has
been developed to support storage facilities. A key aspect of
this is that all data is first stored locally, and then pushed to the
final destination as and when a connection is available to the
storage plugin. This means that by default, basic DIL network
handling is a part of MLAB. Furthermore, the plugin itself can
add additional handling of problematic network connectivity. It
could for instance skip all updates except the last one when
connectivity is restored (if this is a realistic method for
handling connectivity issues obviously).

The second aspect that will be useful for test bed
applications is features. A feature is an app-wide element that
can be used to add functionality that runs in the background,
regardless of which page or component the end user interacts
with. This could for example be a position tracking feature
which reads the GPS position at regular intervals. Features,
which are a type of component, can also be linked to a storage
plugin, so in the GPS example positions can be stored, and then
shared with other users of the same app on other devices.

Framing all this is the template which takes care of the
formatting (i.e. look and feel) of all components. This means
that component developers (who in our case would be a
researcher) can focus on the technological side, without the
overall user experience suffering from lack of attention.

C. Example of a component that faces DIL issues
To wrap up this section it is useful to discuss an example of

a component that highlights what sort of issues an app in a DIL
environment would have to tackle. This is a simple counter
component for military personnel to count the number of
certain types of observations or incidents. It has been requested
by representatives of the Norwegian military and thus
represents a real need, and is not a theoretical use case. It has
not been developed yet; here I just raise the issues that we
envisage having to tackle, without presenting any solutions.

For simplicity’s sake we will assume there is no overlap in
the counting, i.e. each counter increment represents a single,
unique observation. The train of thought when developing this
component would follow these broad outlines:

• In a standalone version where each user uses it locally
this component would simply increment an integer and
store it on the device using the standard MLAB storage

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/VTCSpring.2015.7146128

5

plugin API. This would obviously not be affected by
DIL network issues.

• In a networked version where several users use it to
count the same type of observations, this is also trivial
as long as they all have network connectivity all the
time. One would have a server with a function which,
when called, incremented a central counter and returned
the latest value. There may also be a read-only function
to get regular updates of the counter on devices that had
not sent any updates for some time.

• In a DIL network environment the counter needs to be
stored locally, and then sent up to the server. We would
need a different server function which increments the
counter with a specified value so the component can
make a single update call when multiple counts have
been cached locally when the network was unavailable.

However, the above solutions are technical solutions, this is
where MLAB test bed apps can expose some user interface
issue. The core question for a real life user would be “how
much can I trust this counter?”

• First one could add a “last updated” message in the
component. This could be enhanced with further
information of how often other users have updated and
their most recent submissions. Such information would
help the end user to evaluate if the current count is
realistic or is better ignored; frequent counter updates
followed by mainly silence could be a bad sign.

• Some mapping information showing where the updates
were last updated could further enhance trust in the
data, if one’s own are has only been silent for a minute,
whereas other areas have been silent for an hour it could
indicate that one should have less trust in information
from that area.

• One could consider adding some form of “network
selection” facility, so one could use a mobile ad hoc
network (MANET) [20] (through Bluetooth or Wi-Fi
direct for example) which would let users nearby update
their counters.

This is by all means not an exhaustive list of DIL network
environment issues, but it does show how test bed apps, and the
MLAB architecture, can help researcher better understand what
features the elements in the protocol stack should support to
enhance the user experience of tactical domain users.

IV. CONCLUSION
The MLAB ecosystem is currently work in progress, with

completion of a usable version estimated mid-2015. This paper
has hopefully shown that being able to easily create apps that
are user friendly and focus on realistic tasks can enhance the
research in ways that extend beyond the purely technical. The
inclusion of the user (and user’s managers’) view points and
experiences should help to improve the acceptance of protocols
and algorithms that are developed. At the same time, the
component aspect will enhance the re-usability and sharing of
code between researchers, and between researchers and tactical
domain users.

[1] M. Tortonesi, A. Morelli, C. Stefanelli, R. Kohler, N. Suri, and S.
Watson, “Enabling the deployment of COTS applications in tactical
edge networks,” IEEE Commun. Mag., vol. 51, no. 10, pp. 66–73, Oct.
2013.

[2] “Smartphone Users Worldwide Will Total 1.75 Billion in 2014 -
eMarketer.” [Online]. Available:
http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-
Total-175-Billion-2014/1010536. [Accessed: 12-Jan-2015].

[3] “Gartner Says Sales of Smartphones Grew 20 Percent in Third Quarter
of 2014.” [Online]. Available:
http://www.gartner.com/newsroom/id/2944819. [Accessed: 12-Jan-
2015].

[4] “Worldwide Smartphone Usage to Grow 25% in 2014 - eMarketer.”
[Online]. Available: http://www.emarketer.com/Article/Worldwide-
Smartphone-Usage-Grow-25-2014/1010920. [Accessed: 12-Jan-2015].

[5] E. Agu, P. Pedersen, D. Strong, B. Tulu, Q. He, L. Wang, and Y. Li,
“The smartphone as a medical device: Assessing enablers, benefits and
challenges,” in 2013 IEEE International Workshop of Internet-of-
Things Networking and Control (IoT-NC), 2013, pp. 48–52.

[6] R. Ferrus, O. Sallent, G. Baldini, and L. Goratti, “LTE: the technology
driver for future public safety communications,” IEEE Commun. Mag.,
vol. 51, no. 10, pp. 154–161, Oct. 2013.

[7] J. Keller, “DARPA to create app store of military mobile apps that run
on rugged smartphones and tablets,” Military & Aerospace Electronics.
[Online]. Available:
http://www.militaryaerospace.com/articles/2013/04/DARPA-
Transformative-Apps.html. [Accessed: 04-Apr-2014].

[8] V. Kaul, C. Makaya, S. Das, D. Shur, and S. Samtani, On the
Adaptation of Commercial Smartphones to Tactical Environments.
2011.

[9] “Military Tests 4G LTE Technology During Bold Quest 13.2 > Camp
Atterbury Joint Maneuver Training Center (CAJMTC) > Latest News
and Multimedia Releases.” [Online]. Available:
http://www.campatterbury.in.ng.mil/PublicAffairs/LatestNewsandMulti
mediaReleases/tabid/781/articleType/ArticleView/articleId/1311/Militar
y-Tests-4G-LTE-Technology-During-Bold-Quest-132.aspx. [Accessed:
04-Apr-2014].

[10] “Remote Troops Closer to Having High-Speed Wireless Networks
Mounted on UAVs.” [Online]. Available:
http://www.darpa.mil/NewsEvents/Releases/2014/04/07.aspx.
[Accessed: 07-May-2014].

[11] D. S. Alberts and R. E. Hayes, Power to the edge: command, control in
the information age. Washington, DC: CCRP Publication Series, 2003.

[12] J. Sonnenberg, “Disconnected, Intermittent, Limited (DIL)
Communications Management Technical Pattern,” 2009.

[13] F. T. Johnsen, T. H. Bloebaum, P.-P. Meiler, I. Owens, C. Barz, and N.
Jansen, “IST-118–SOA Recommendations for Disadvantaged Grids in
the Tactical Domain,” DTIC Document, 2013.

[14] A. Christensen, “Mobil-apper uten programmering for Forsvaret,”
forskning.no, 11-Nov-2014. [Online]. Available:
http://forskning.no/teknologi-data-informasjonsteknologi/2014/10/snart-
kan-ola-soldat-lage-mobil-app. [Accessed: 12-Jan-2015].

[15] C. Jackbo Gran, “Mobile Bakery,” presented at the NORDEFCO ADL
Conference 2014, Gol, 14-May-2014.

[16] M. K. Fidjeland and B. K. Reitan, “Web-oriented Architecture-
Network-based Defence development made easier,” FFI, Kjeller,
Norway, 2009/01784, 2009.

[17] H. M. Collins, “What is tacit knowledge,” Pract. Turn Contemp.
Theory, pp. 107–119, 2001.

[18] A. Bergh, “From the death grip of PowerPoint to mobile freedom: The
Mobile Learning App Builder (MLAB),” FFI, Kjeller, Norway,
2014/01452, Aug. 2014.

[19] A. S. Hofgaard and A. Bergh, “Komponenter til app-byggeren MLAB,”
FFI, Kjeller, Norway, FFI-notat 2014/01462, Forthcoming.

[20] G. Hinojos, C. Tade, S. Park, D. Shires, and D. Bruno, “BlueHoc:
Bluetooth Ad-Hoc Network Android Distributed Computing.”

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/VTCSpring.2015.7146128

	I. Introduction
	II. MLAB: What is it and how does it work?
	A. Background
	B. The MLAB ecosystem

	III. Using MLAB to create test bed apps
	A. Potential benefits
	B. Enabling the potential benefits
	C. Example of a component that faces DIL issues

	IV. Conclusion

