

FFI-rapport 2013/00567

Clustering evaluation for deinterleaving

Eirik Jensen Opland

Norwegian Defence Research Establishment (FFI)

23 February 2013

 2 FFI-rapport 2013/00567

FFI-rapport 2013/00567

1219

P: ISBN 978-82-464-2230-5

E: ISBN 978-82-464-2231-2

Keywords

Algoritmer

Deinterleaving

Klynging

Radar

ESM

EST

Testing

Optimalisering

Approved by

Berit Jahnsen Project Manager

Anders Eggen Director

FFI-rapport 2013/00567 3

English summary

Deinterleaving is a fundamental step in a lot of processing in ESM and radar systems, enabling

users and/or client programs to focus on data from a single emitter at a time, rather than a mixture

of data from several emitters.

When developing deinterleaving algorithms, it is sometimes useful to compare deinterleaving

results with a model solution. Such a solution may be available because one has some alternative

way of deinterleaving existing interleaved data, because one generates the data oneself, for

example with a PDW simulator, or because one combines (interleaves) several existing non-

interleaved data sets.

This report discusses some methods of assessing clustering results in the context of

deinterleaving, and focuses on evaluation criteria that consider the problem of clustering as a

binary classification problem, where the objects to be classified are all the possible pairs of

distinct input points. A pair is classified as positive or negative, respectively, if the two points in

the pair are in the same or different clusters. An efficient evaluation algorithm is developed,

which avoids visiting every pair of points, but instead calculates the necessary information based

on the sizes of clusters.

Finally, the evaluation criteria are used along with some already deinterleaved data in order to

optimize a key parameter to the LINE deinterleaving algorithm. This leads to a new choice of

evaluation criterion that is more suitable to the current data set. The GEOIDE deinterleaving

algorithm is tested on the same data and the results are discussed. The same data set is used for

generating new data sets, by combining deinterleaved emissions in new ways. The new data sets

are used for testing LINEs deinterleaver further.

 4 FFI-rapport 2013/00567

Sammendrag

Deinterleaving er et grunnleggende steg i ESM- og radarsystemer, og gjør det mulig for brukere

og/eller programmer å fokusere på data fra en enkelt emitter, istedenfor en blanding av data fra

flere emittere.

Ved utvikling av deinterleavingsalgoritmer, er det noen ganger nyttig å sammenligne

deinterleavingsresultater med en fasit. En fasit kan være tilgjengelig fordi man har en alternativ

måte å deinterleave eksisterende interleavede data, fordi en genererer data selv, for eksempel ved

hjelp av en PDW simulator, eller fordi man kombinerer (interleaver) flere eksisterende sett av

ikke-interleavede pulsdata.

Denne rapporten tar for seg noen metoder for å evaluere klyngingsresultater i forbindelse med

deinterleaving, og fokuserer på evalueringskriterier som betrakter klynging som et binært

klassifiseringsproblem, hvor objektene som skal klassifiseres er alle mulige par av distinkte

inputpunkter (pulser). Et par er klassifisert som henholdsvis positivt eller negativt, dersom de to

punktene i paret er i samme eller forskjellige grupper. En effektiv evalueringsalgoritme er

utviklet, som unngår å besøke hvert mulig par av punkter, men i stedet beregner den nødvendige

informasjon basert på størrelsene av punktklynger.

Evalueringskriteriene brukes sammen med noen ferdig deinterleavede data for å optimalisere en

viktig parameter i LINEs deinterleavingsalgoritme. Evalueringen av disse dataene leder til valg av

et nytt evalueringskriterium, som er mer egnet til det gjeldende datasettet. GEOIDEs

deinterleavingsalgoritme er testet på samme datasett, og resultatene diskuteres. Det samme

datasettet brukes til å generere nye datasett, ved å sette emisjonene sammen på nye måter, og

LINEs deinterleaver prøves på nye måter.

FFI-rapport 2013/00567 5

Contents

1 Introduction 7

2 Measuring deinterleaving results against a model solution 8

2.1 Clustering 8

2.1.1 Terminology and conventions 9

2.2 Measuring clustering results against a target solution 10

2.2.1 Matching solution clusters with result clusters 10

2.2.2 Considering all pairs of points 11

3 Efficiently calculating TP, FP, FN and TN 12

3.1 Efficiently calculating TP 12

3.2 Efficiently calculating FN 13

3.3 Efficiently calculating FP 14

3.4 Efficiently calculating TN 15

3.5 Summary of the algorithmic complexity 15

4 Applying the evaluation criteria to real data 15

4.1 Using navigation radar data that have already been deinterleaved 16

4.2 Testing the GEOIDE deinterleaver on the same data as for LINE_Deint 24

4.3 Using the same data to generate new scenarios 25

4.3.1 Randomly moving every emission 26

4.3.2 Randomly moved emissions on a resized time axis 26

4.4 Further work 28

5 Summary 29

 Appendix A LINE Deinterleaver Algorithm, LINE_Deint 30

 Appendix B Complexity analysis and the big O notation 31

 Appendix C Algorithm for calculating TP, FN, FP and TN 32

 References 32

 6 FFI-rapport 2013/00567

FFI-rapport 2013/00567 7

1 Introduction

Deinterleaving is a fundamental step in a lot of processing in ESM and radar systems, enabling

users and/or client programs to focus on data from a single emitter at a time, rather than a mixture

of data from several emitters. Deinterleaving of pulsed signals is the problem of building groups

of pulses, so that pulses originating from the same emitter are put in the same group, but pulses

originating from different emitters are put in different groups. Deinterleaving can be quite easy or

very difficult, depending on the signal environment, which parameters are available and to what

extent different emitters are sufficiently different, with respect to these parameters.

Having deinterleaved some pulses, it is very useful to be able to evaluate the result. This is

valuable both during the development of deinterleaving algorithms and when applying them in

practice. The ways to do this can be split into two main categories of approaches:

 Approach 1: Check the result for agreement with an ideal solution.

 Approach 2: Look at new data, or different attributes in the data to validate the result.

Approach 2 is applicable to all stages of deinterleaving. For example, if one deinterleaved the

data based on the assumption that each emitter transmitted pulses at a different radar frequency,

one may use continuity in the pulse repetition interval and amplitude to strengthen the confidence

in the result considerably. The LINE
1
 deinterleaving algorithm (Appendix A) takes an approach

similar to this, using the amplitude to generate candidate pulse trains, and then stability in the PRI

to confirm the result. Approach 2 can also be used for testing a deinterleaving algorithm,

particularly if the validation is strong enough that one can assume the result to be sufficiently

correct. The greatest strengths of this approach, compared with approach 1, are its wide

applicability and the fact that one does not need to know the solution in advance.

The greatest weakness of approach 2 is the (sometimes great) uncertainty of its correctness. This

is avoided in approach 1, which uses a definitive answer, with which to compare the result. Of

course, such an answer may be difficult or impossible to obtain, but that is another matter, which

will be addressed below. However, given a perfect solution, approach 1 is guaranteed to give a

definitive assessment, and given a good, but imperfect solution, approach 1 may still give a

highly relevant answer. How to measure the agreement between a result and a solution is another

matter that requires some consideration. This will be discussed in chapter 2.

1
 “LINE (LIten Navigasjonsradar ESM) was an activity at FFI that culminated in the spring of 2012 at

Unified Vision 2012 (UV12), in which two experiment sensors were used to track ships by their navigation

radars at Ørlandet. This was accomplished by combining the difference in the rotation phase of the radar

(based on the strength of the signal received at each ESM-sensor) with the difference in the time of arrival

(TDOA) of pulses at the two ESM-sensors. The two methods gave several geographical curves (arcs and

half hyperbolas), such that the radar would be located at an intersection between the curves.” (Quoted

directly from (1)).

 8 FFI-rapport 2013/00567

There are several situations in which a sufficiently good ideal solution may be available. Here are

some examples:

1. One has some alternative way of deinterleaving existing interleaved data. Perhaps one is

developing a deinterleaver that is meant to work in real-time with very limited hardware

resources. In a lab environment, one may have access to abundant physical resources and

be able to use the most sophisticated algorithm. One may even have a human available to

do the job manually or help the algorithm with the most difficult tasks, since humans are

frequently better at pattern discovery. This may enable the creation of excellent solutions

to realistic problems, and then other deinterleavers can be tested against this solution.

2. One generates the data oneself, for example with a PDW
2
 simulator. One may know

enough about the process generating the pulses to make pretty realistic simulations,

which can provide the solutions along with the input data.

3. One combines existing non-interleaved data into an interleaved data set. Then each

component that is being combined represents all the data from one single emitter, which

can be used as a model solution.

2 Measuring deinterleaving results against a model solution

Given a model solution, a deinterleaving output can be automatically measured in a more reliable

way than otherwise, and the quality of different deinterleaving results can be compared more

easily. This can be used in order to optimize free parameters in the algorithm or improve the

algorithm in other ways. It can also be used to assess the algorithm by exposing it to realistic

scenarios for which real recordings are not yet available, to expose weaknesses and to identify the

limits of the algorithm, both in terms of what kinds of inputs it can handle and the quality of the

results for such inputs. These are key criteria, when determining whether the algorithm can be

expected to meet the needs of a particular client program.

2.1 Clustering

Deinterleaving is a type of clustering problem. Clustering is the more general problem of

grouping together data points, so that points within the same group are related to each other in

some way, but less related to points within the other groups. For example, given time of arrival,

radar frequency, pulse length, bearing and pulse repetition frequency of some pulses, a clustering

algorithm may group together pulses with similar values for one or several of those measures.

Exactly which pulses are grouped together, and on the bases of which criteria all depends which

clustering algorithm is used and how it is configured.

2
 A pulse description word (PDW) is a description of the attributes of a particular pulse. Typically, it is a

vector of numbers, where each number represents one attribute.

FFI-rapport 2013/00567 9

2.1.1 Terminology and conventions

The following terminology and conventions are used when discussing clustering problems, results

and solutions in the following sections. This list is relatively long, but it should make subsequent

sections easier to read, and provides a single place of reference for the sections that follow.

Concept Description

Clustering

Input

A set D of ND data points, di (i ∈ {0, ..., ND})
3
. The index “i” will be used

exclusively to refer to input data points, so that one can refer to the data point

i or di interchangeably and without any ambiguity. Unless stated otherwise, i

and di will refer to an arbitrary data point.

Pairs of input

data points

It will be useful to discuss arbitrary pairs of input data points. (i1, i2) is used

as a short-hand notation for any pair of data points, i1 and i2.

Result Clusters A given clustering algorithm will group the input, D, into some number, NR,

of clusters, known as result clusters.

Let R be the set of result clusters, rj (j ∈ {0, ..., NR}), that is, outcomes of

applying some clustering algorithm to D. Note that each rj is a subset of D.

The index “j” will be used exclusively to refer to result clusters, so that one

can refer to the result cluster j or dj interchangeably and without ambiguity.

Unless stated otherwise, j and rj will refer to an arbitrary result cluster.

Let r0 be reserved for unclustered data points, i.e. points that do not belong to

any cluster. This is not actually a cluster, which would be self-contradictory,

but, for convenience, is treated as part of the cluster set.

Cluster

Memebership

Array

Let the cluster membership of all the data points be represented by an array,

AR, of length ND. The value of AR(i) gives the index, j, of the result cluster to

which the data point i belongs.

Clustering

Solution

A clustering solution is expressed just like a clustering result, except that the

letters R, r and j are replaced, respectively, by the letters S, s and k. In

particular, the terms S, sk, k, AS, NS and s0 mean the same about solution

clusters as R, rj, j, AR, NR and r0 mean about result clusters.

Big O notation,

O()

When discussing algorithms, concepts like time complexity, memory

complexity and the big O notation, O(), are very useful. These concepts are

explained in detail in Appendix B.

3
 A set, unlike a sequence, does not impose an order on the elements within it, but the elements here are still

enumerated with natural number subscripts. This is only for ease of reference, and implies no meaningful

ordering of the elements.

 10 FFI-rapport 2013/00567

2.2 Measuring clustering results against a target solution

Now consider the situation in which one knows in advance which points should, or should not,

belong together in the same clusters, so that the quality of a result can be measured by comparing

it to the solution.

Measuring a result against a solution is complicated by the fact that there may be no definitive

matching between each solution cluster and a corresponding result cluster. If there was, one way

would be to simply consider each solution cluster in turn and check how many of the data points

within that cluster have been correctly/incorrectly put in the corresponding result cluster. These

two figures could then be measured against the total number of data points, and would provide a

good basis for measuring the quality of a result, relative to the size of the problem.

2.2.1 Matching solution clusters with result clusters

As discussed above, there may be no definitive matching between solution clusters and result

clusters. However, there may still be a very strong correspondence. For example, one result

cluster, j, may contain 95% of the data points of some solution cluster, k. If so, then those 95% of

the points have been correctly grouped together with each other (but not with the remaining 5%

of sj), and so it may be reasonable to match j with k, and this matching can be discovered by

checking which k has the most common elements with j. However, this may lead to conflict when

trying to match up the other clusters.

In order to find the optimal matching of result clusters with solution clusters, one may consider all

possible ways of associating any j with any k, and see which set of matchings leads to the best

performance. One great disadvantage of this approach is that, as the number of clusters grows, it

leads to a combinatorial explosion in the number of ways one can match the result j with the

solution k. In particular, based on the sizes of S and R, the number of such combinations is given

by formula (2.1):

 () (
 ()

 ()
)

 ()

(() ())

 (()) (() ())

(2.1)

Hence, the time complexity is effectively factorial (accounting for the worst cases) in the smallest

of the inputs, and so unless either NR or NS is fairly small, this number is huge. For example, if

NR=30 and NS=30, then the number of combinations is more than 10
32

, which would take tens of

thousands of times the age of the universe to run on a modern computer, if it could run that long.

In other words, even for fairly small problems, it will take the computer much too long to check

all the different combinations.

One can make some assumptions that reduce the time complexity to be completely manageable.

For example, one can start with the largest result cluster, and then identify the best matching

solution cluster. Then one could stick with that matching and progress in the same way with the

remaining clusters. In general, one disadvantage of this approach is that one may misrepresent the

FFI-rapport 2013/00567 11

quality of the clustering in some cases. However, when this is the case, the clustering result is

typically pretty poor anyway. Therefore, if ones goal is to distinguish pretty good clustering

results from mediocre and poor clustering results, and one would also like to distinguish the very

best clustering results from the slightly poorer (but potentially still excellent) clustering results,

then this way of measuring results can be suitable. On the other hand, if one wants to compare

mediocre or poor results with other results of approximately the same (mediocre or poor), but

slightly different quality, then this measure may be totally misleading.

Another disadvantage of matching result and solution clusters is that, even if one finds the

optimal matching, it may in some cases not be a very fair measure. Suppose a solution cluster is

split into two result clusters of approximately equal size. Then only the contents of the first result

cluster will contribute to the positive performance. However, the data points in the second cluster

were successfully grouped together – with each other, but not with the data points in the first

cluster. This is just one example of how this method is frequently not the best expression of the

quality of a clustering result.

One positive property of this approach is that it can be easily visualized. Every data point is either

in the right cluster or in the wrong cluster, which can be easily visualized, for example by a color

in a plot of the input points.

2.2.2 Considering all pairs of points

Alternatively, one can consider the set, P, of all possible pairs of points, () in D. There are

ND(ND-1)/2 such data points. Then a clustering result or solution associates every such pair with

truth values about whether the pair is in the same cluster or not, according to that clustering result

or solution. Then, by inspecting AR(i1), AR(i2), AS(i1) and AS(i2) for every pair to determine

whether both points are in the same result cluster and solution cluster, every pair can be assigned

one of the following four categories:

1. Correctly grouped together (True Positives, TP)

- They are in the same result cluster and solution cluster

2. Incorrectly grouped together (False Positives, FP)

- They are in the same result cluster, but different solution clusters

3. Incorrectly not grouped together (False Negatives, FN)

- They are in different result clusters, but the same solution clusters

4. Correctly not grouped together (True Negatives, TN)

- They are in different result clusters and solutions clusters.

Counting the number of pairs in each of the above categories, and associating these counts with

the category labels, TP, FP, FN and TN, the following additional measures can be derived:

 TPMax=TP+FN (2.2)

 TNMax=TN+FP (2.3)

 Sensitivity = TP / TPMax (2.4)

 12 FFI-rapport 2013/00567

 Specificity = TN / TNMax (2.5)

 Accuracy = (TP + TN) / (TPMax + TNMax) (2.6)

TPMax and TNMax are the largest possible respective values of TP and TN, for a given problem.

TP=TPMax and TN=TNMax are both true whenever a result is equal to the model solution with

which one compares it.

When counting the categories TP, FP, FN and TN, one must make special considerations for

AR(i)=0 and AS(i)=0, since the value zero was reserved for unclustered data points. If one of the

two points satisfies AR(i)=0, then they are not clustered together in the result, and if one of the

two points satisfies AS(i)=0, then it is not clustered together in the solution. This is a trivial

addition to the counting process, but important to include.

It is worth noting that, for any clustering problem, there is a trivial solution, grouping all inputs

together, giving a sensitivity of 1 (optimal) and another trivial solution, assigning a separate

cluster to each data point (or putting them all in the unclustered group), giving a specificity of 1.

Thus one cannot measure clustering well with only one of these criteria. One needs to either

consider both or combine the criteria in some way. Accuracy is one such combination, which

makes the assumption that false positives/negatives are equally bad. For now, specificity and

sensitivity will be observed together. It will be seen lager (section 4.1) that specificity is not

always a suitable, and an alternative criterion, precision, will be introduced.

Note that categorizing each pair in P explicitly and hence counting the number of pairs in each

category, TP, FP, TN, FN, has a time complexity of O(ND
2
), which is not remotely as bad as the

factorial time complexity of combining result and solution clusters (2.2.1). Nevertheless, it can

make quality measuring very time consuming as N grows large. Fortunately, one does not need to

count all these pairs explicitly. This can be calculated much faster, with time complexity

O(NDNRNS), as described in chapter 3. This is always better than O(ND
2
), since both NR and NS

must always be smaller than ND. It makes no sense for there to be more clusters than data points,

since some clusters would then have to be empty.

3 Efficiently calculating TP, FP, FN and TN

It is not necessary to read this rather technical section in order to follow the rest of this document,

but it is included for completeness and for the interested reader, because evaluating clustering

performance is a critical component of the work in this report, without which cluster quality

evaluation would be much less efficient. Algorithm for calculating TP, FN, FP and TNAppendix

C gives pseudo-code that implements the steps described in the rest of this chapter.

3.1 Efficiently calculating TP

Any pair of points, (i1, i2) is a true positive (TP) if and only if both points are within the same

result and solution clusters, rj and sk. This is the case if and only if both points are within the

FFI-rapport 2013/00567 13

intersection
4
 rjsk. Given a 2-dimensional array, Z, of cardinalities

5
, Zj,k=|rjsk|, of each

intersection, the total number of pairs of points within each intersection is Zj,k(Zj,k-1)/2. Finding

Zj,k, for a particular intersection, can be done in O(ND) time by processing every data point, di,

once, and incrementing a counter whenever AR(i) equals j and AS(i) equals k.

In order to find the total number of TPs, one could repeat the process of the previous section for

each intersection in turn, before adding together the values Zj,k(Zj,k-1)/2. This means that the

process would be repeated NRNS times, making the whole calculation of TP require

O(NDNRNS) processing time. Fortunately, there is a much more efficient alternative, based on

the fact that each data point, di, is a member of exactly one of the intersections rjsk.

1. Initialize all elements in Zj,k to zero.

2. For each data point, di:

2.1. j=AR(i)

2.2. k=AS(i)

2.3. Increment Zj,k by 1.

3. ∑ ∑ () ⁄

Note that the unclustered elements at j=0 and k=0 are accounted for here by simply ignoring any

j=0 and k=0 in the sums of step 3. This is correct because pairs that are unclustered in the result

are (by definition) not positive and pairs that are unclustered in the solution can only be true if

they are not positive.

Steps 1 and 3 in the above algorithm have a time complexity of O(NRNS), whilst step 2 has time

complexity ND. So, the whole algorithm has time complexity O(ND+NRNS). The memory

complexity is O(NRNS), for storing the array Z.

3.2 Efficiently calculating FN

Recall that TPMax=TP+FN is the total number of pairs of points that should have been grouped

together in an ideal case. TPMax is the maximum number of TPs that a clustering result could ever

accomplish for a given problem. TP equals TPMax whenever the result clustering is equal to the

solution clustering, so one can simply find the number of TPs for each solution cluster.

The solution, by definition, cannot contain any FP, so all positives must be TPs. Thus all points

within sk will be paired with all points that are not in sk. Given an array, C, of cardinalities,

Ck=|sk|, of each solution cluster, the total number of such pairs for a given solution cluster,

4
 The intersection of two sets, A and B, is the set containing all elements that are both in A and B.

5
 The cardinality, |S|, of any set, S, is the number of elements within S.

 14 FFI-rapport 2013/00567

sk, is Ck(Ck -1)/2. C can be found by processing all points in D once, counting how many times

each different value of AS(di) occurs. Then TPMax is given by formula (3.1):

 ∑
 ()

∑ ()

(3.1)

Notice that the summation ignores k=0, since the group of unclustered points does not contribute

toward TPMax. One can now calculate FN by FN=TPMax-TP. Calculating TPMax does not depend

on the clustering result, only the solution. Therefore, if many different clustering results are to be

compared, for example in order to optimize cluster parameters, then TPMax can be calculated only

once and reused for all cluster evaluations. This does not change the time complexity of the whole

algorithm, but will reduce the execution time somewhat. The time and memory complexities for

calculating FN are respectively O(ND+SD) and O(SD). These complexities are of lower order than

the ones for TP, so they do not influence the overall complexity analysis.

3.3 Efficiently calculating FP

Every pair of clusters gives a certain contribution of FPs, similar to the calculation of TPs. For a

given pair of clusters rj and sk, every point within the intersection, rjsk will be part of an FP with

every point that is in rj but not sk. So, if one knew the size, Zj,k, of the intersection rjsk, and the

size, Qj,k of the set difference
6
 rj\sk, then the contribution of FPs from the combination of rj and sk

would be Zj,kQj,k. Zj,k has already been counted in section 3.1. Any given Qj,k can be calculated

by formula (3.2):

 | |

(3.2)

The set difference operation removes from rj all elements contained in rj that are also in sk. These

elements are the intersection rjsk, and so the formula is equivalent to:

 | ()|

(3.3)

The elements in rjsk are all part of rj, and so the number of elements removed from rj by the set

difference operation is the size, |rjsk|. Hence the formula can be simplified as follows:

 | | | | | |

(3.4)

Simply adding the products Zj,kQj,k together would count every FP twice. The reason for this is

that every point, di, that is within an intersection with some result cluster rj is also outside another

intersection with rj. So the sum must be divided by two. The sum must also ignore any points in

r0, since these are explicitly unclustered, and therefore not false positives, or positives at all.

6
 Given two sets, S1 and S2, the set difference, S1\S2 is the set of elements that are in S1 but not in S2.

FFI-rapport 2013/00567 15

Finally, all points in some intersection, rjs0, do not only form FPs with points in the set

differences rj\s0. They also form false positives with all other points within that intersection. Thus

the number of pairs of points within those intersections must be added to the total count of FPs.

These considerations lead to the following formula for calculating FP:

 (∑(∑

)

) ⁄ ∑ ()

(3.5)

Having already calculated all Zj,k, this calculation has both time and memory complexity

O(NRNS), which causes no increase in the complexity of the whole algorithm.

3.4 Efficiently calculating TN

Having already found FP, one only needs to find TNMax in order to calculate TN=TNMax-FP.

Consider each solution cluster, sk. The points within sk should not be clustered with any points

outside sk. Having already counted the number of points, |sk|, within each solution cluster, the

number of points that are not within each solution cluster is easily calculated as ND-|sk|. Then

TNMax is given by formula (3.6):

 ∑| | (| |)

(3.6)

Hence, TN can be easily calculated, and this part of the algorithm has time and memory

complexities O(NS) and O(1) respectively. Again, this causes no increase in the complexity of the

overall algorithm.

3.5 Summary of the algorithmic complexity

This chapter showed how TP, FN, FP and TN can be calculated, based on the sizes of result

clusters, solution clusters, intersections, differences and complements of these sets. The algorithm

is summarized with pseudo-code in Appendix C. The overall time complexity of the algorithm is

O(ND+NRNS). The memory complexity is O(NRNS), which is pretty small except when there

are a very large number of clusters. This is a great improvement compared with the time

complexity O(ND
2
), which would inspect the cluster memberships of every pair of data points

explicitly.

4 Applying the evaluation criteria to real data

The introduction mentioned three scenarios in which one may have access to an ideal solution,

with which to compare a deinterleaving result. One situation was when the pulses were generated

by a PDW simulator. This was the approach taken in (1), where the LINE deinterleaver was

tested using data from the PDW simulator described in (1). The sensitivity and specificity criteria

were optimized with respect to the relative jitter tolerance (J in the algorithm of Appendix A), and

 16 FFI-rapport 2013/00567

then after the optimization, the performance was measured on other parts of the same data set.

The optimization gave great improvements of the deinterleaving, which was verified by visual

inspection of some of the cases. (1) also suggests some further applications of the PDW simulator

data, in the context of deinterleaver development.

In the following sections, the LINE deinterleaver is instead applied to real data, for which a

solution has been developed manually in advance. Inputs and parameters are manipulated in order

to optimize the deinterleaver and test it on new challenges.

4.1 Using navigation radar data that have already been deinterleaved

One interesting application, mentioned in the introduction, is to measure deinterleaving

performance on a real data set. Figure 4.1 shows an example data set that will be used here. The

data set shown in Figure 4.1 was first deinterleaved by the LINE deinterleaver, hereafter known

as LINE_Deint, before the result was improved further using a manual deinterleaver, developed

by the author. Figure 4.2 shows the results of this deinterleaving, and will be used as the solution,

against which deinterleaving results will be compared.

Figure 4.1 Amplitude (top) and radar frequency (bottom) plotted against time for an ESM

recording of navigation radars. Numbers and further information about the data is

left out in order to keep this report unclassified.

FFI-rapport 2013/00567 17

Figure 4.2 This figure shows the data from Figure 4.1 after careful deinterleaving. The result is

presented with a different color for each emitter, but with only 18 different colors,

since similar colors are hard to discriminate for a human reader. Therefore, colors

are repeated for different emitters, which will be the case for all subsequent

deinterleaving plots. The bottom plot shows the difference in TOA between

consecutive pulses (i.e. the PRI). The deinterleaving result is not guaranteed to be

correct throughout the plot, but it is more than good enough as a solution against

which to compare the results of automated deinterleaving.

This solution does not merge (put together) sequences of pulses when there are big gaps of time

between the sequences. Hence, each emission is considered to be terminated when there is a big

gap in time. Figure 3 shows an example of two such sequences, which have practically identical

distributions, both of PRI (bottom plot) and frequency (middle plot). With merging, one would

expect these to be put together.

 18 FFI-rapport 2013/00567

Figure 4.3 Zoomed in version of two parts of Figure 4.2. The majority of the pulses in the

rounded rectangles have practically the same PRI- and frequency-distributions and

similar lobe shapes, suggesting that they may originate from the same emitter.

Having created a solution, it is time to evaluate some results against the solution. Appendix A

describes the LINE deinterleaving algorithm, which was also used in (1). One important

parameter in LINE_Deint is the relative jitter tolerance; J. Figure 4.4 shows the performance

criteria specificity and sensitivity, discussed earlier.

FFI-rapport 2013/00567 19

Figure 4.4 Specificity (green) and sensitivity (red) after using LINE_Deint, varying J from

 0 to 5.

There are two remarkable things to observe about Figure 4.4. Firstly, the greatest value of J is 5.

This means that, in the search for sequences of pulses with a fixed PRI, one tolerates a leeway

that is 5 times greater than the PRI itself. This is an enormous value, since the PRI normally does

not vary by more than 20%, and that is already a lot. However, the remarkable observation is that

the sensitivity remains as high as around 0.4, i.e. 40% of the pairs of pulses that should be

grouped together are grouped together. The reason for this is probably that the data are relatively

uninterleaved, in the first place. Many emissions overlap no other emission, and so, since the

algorithm searches for sequences of consecutive uninterleaved pulses, it successfully finds these

non-overlapping emissions. On the other hand, if the data had been highly interleaved, the large

value of J would have likely caused more arbitrary deinterleaving results, and hence a lower

performance.

The second remarkable thing, which is even more remarkable, is that the specificity is

approximately 0.99-1, independent of the value of J. In other words, the pairs of pulses that

should not be together are not together, in most cases.

The reason for the great specificities in this case, is that the data consist of lots of small emissions

of data separated by relatively big time gaps (see e.g. Figure 4.3). Even if one (largely

erroneously) grouped together many pulses that were relatively near each other in time, there

would still be a much larger number of pulses, before and after a time gap, with which these

pulses were successfully not grouped together. Hence the numerator in the right hand side of

formula (2.5) is practically as big as the denominator. Unfortunately, this means the deinterleaver

gets away with a great mark (specificity) for a terrible deinterleaving job, which is illustrated in

Figure 4.5. Notice the rainbow patterns, which suggest that a new emitter is generated for nearly

every pulse.

 20 FFI-rapport 2013/00567

Figure 4.5 Zooming in on the result of applying LINE_Deint with J=5 to the data shows how

terrible the result is, despite the respective specificity and sensitivity values of 0.99

and 0.37.

This shows that specificity does not necessarily say a lot, in absolute terms, about how well a

result avoids forming the pairs that it is not supposed to form. Specificity may still be quite

applicable as an optimization criterion, but then one could just as well use TN (section 2.2.2),

from which specificity was derived, since the numerator, TNMax is independent of the result. An

alternative criterion is precision, given as:

()

(4.1)

This is the proportion of the pairs that were rightfully formed, relative to the total number of pairs

that were formed. This gives a much more reasonable performance curve, shown (with

sensitivity) in Figure 4.6. The curves follow each other pretty closely for extreme values of J, but

diverge for the more interesting values of J, below 0.5.

FFI-rapport 2013/00567 21

Figure 4.6 Precision (green) and sensitivity (red) for the same values of J as in Figure 4.4.

Now, the performance can be analyzed further, by looking at the sensitivity and precision in the

range J[0, 0.5], which is shown in Figure 4.7. J=0.15 gives a pretty good precision of nearly

0.98, and a reasonably good sensitivity of 0.78. As one would expect, increasing J trades some of

the precision for an improved sensitivity. Beware that the crossover point of the green and red

curve is irrelevant. Instead, one should establish how important the precision is, relative to the

sensitivity, which depends on the usage of the deinterleaver.

Figure 4.7 Precision (green) and sensitivity (red) for the more interesting range from 0-0.5.

 22 FFI-rapport 2013/00567

Figure 4.8 Deinterleaving result for J=0.15.

Figure 4.8 shows deinterleaving results for J=0.15, choosing a high precision over some extra

gain in sensitivity. Figure 4.9 zooms in on one part of Figure 4.8, giving a clearer look at how the

deinterleaving goes. The left most part of the top plot of Figure 4.9 shows a lobe with some

alternation in colors (perhaps beige and brown) along the lobe. This suggests that the

deinterleaving has gone somewhat awry. Apart from that, the results look pretty good. However,

zooming in further, as shown in Figure 4.10, reveals that one emission has been split into two

halves.

FFI-rapport 2013/00567 23

Figure 4.9 Zoomed in version of Figure 4.8, showing some examples of where LINE_Deint

succeeds or fails.

 24 FFI-rapport 2013/00567

Figure 4.10 The right most lobes that were shown in Figure 4.9. Notice the transition in color of

the brown lobe as it is about to intersect the other (grayish) lobe. In this case, the

deinterleaver has split one actual emission into two perceived emissions.

4.2 Testing the GEOIDE deinterleaver on the same data as for LINE_Deint

During the GEOIDE projects, a deinterleaver was developed (here referred to as GEOIDE_Deint,

intended to be used by other programs developed in GEOIDE. GEOIDE_Deint used frequency

clustering followed by PRI-analysis for validation. It also had other features, which are not

relevant to this discussion. For further details, please refer to (2). GEOIDE_Deint has some

adjustable parameters, but it was designed to work autonomously, so they are not manipulated

here.

When applying GEOIDE_Deint to the example input from this chapter, it gives a result with

sensitivity of 0.74, which is not bad, compared to LINE_Deint. However, it should be said that

LINE_Deint was developed in a scenario where only time and amplitude was available, whilst

GEOIDE_Deint also uses frequency. This means that the algorithms are competing on pretty

different terms. Since LINE_Deint is not designed to utilize all data given to it, one really should

expect it to perform worse than GEOIDE_Deint, although the opposite is the case, for many

values of J.

FFI-rapport 2013/00567 25

Unfortunately, the result from GEOIDE_Deint gives a very low precision of 0.07. This is pretty

terrible, since it means that only 7% of the pulse pairs that were formed should have actually been

formed, thus most pairs are there by some error. However, this has the simple explanation that

GEOIDE_Deint does some automated merging. Since the solution was built without merging, this

gives a huge number of pairs that may be correct when merging is wanted, but is completely

wrong in this context.

A simple solution is to unmerge the results by looking for big time gaps within the data of each

emission in turn, within the result produced by GEOIDE_Deint. After unmerging, the sensitivity

was reduced to 0.72, but the precision was increased to 0.93. This result is not bad at all, although

still not as good as the best results from LINE_Deint. However, the comparison is still somewhat

unfair, since LINE_Deint, unlike GEOIDE_Deint, was optimized for this particular data set.

Nevertheless, this illustrates how the real data with existing solutions can be used in order to

choose between algorithms.

This concludes the comparison with GEOIDE_Deint. The following sections will direct the focus

toward testing LINE_Deint in different scenarios.

4.3 Using the same data to generate new scenarios

The deinterleaved data from this chapter can be modified in several ways in order to provide

different challenges to the deinterleaver. Here are some suggestions for changes that can be made

to one individual emission. Note that, each of the manipulations below is made on an individual

emission, and not on the entire record:

(1) Change the time the emission arrives by adding a constant to the TOAs of all the pulses.

(2) Change the PRI by multiplying the TOA differences between consecutive pulses by a

constant and modifying the TOA values accordingly.

(3) Change the perceived distance between the emitter and the ESM sensor by multiplying all

amplitude values by a constant.

(4) Change the radar frequency, by adding a constant to the radar frequencies of all pulses.

The following are more complex manipulations that could also be made to the data:

(5) Change a fixed PRI pattern into a stagger pattern, by adding different constants to

different subsets of the pulses, representing each pattern. Whether this would be realistic

is not certain, and pulse attributes would also have to be carefully modified in order to

account for the changes in the time between pulses.

(6) Dwell switching could be simulated, by similar considerations as for stagger.

(7) Radar frequency patterns could be simulated in similar ways as stagger and dwell

switching. This may also be easier, as other parameters may not need adjustment.

 26 FFI-rapport 2013/00567

All of the above modifications can be implemented on many or all emissions within a recording.

Suggestion (1) preserves the realism of the original recording, but still provides plenty of

opportunity for creating new scenarios. It will therefore be the focus in the following sections.

4.3.1 Randomly moving every emission

An easy way to use the original recording to create new challenges is to apply suggestion (1) to

all the emissions, using a different random constant for each emission. This can be done

repeatedly, exposing the deinterleaver to lots of different scenarios, sometimes with several

emissions received at the same time, sometimes with emissions evenly distributed. Here, the

constants were drawn from a uniform distribution, so that all the data stayed within the original

time range. J=0.15 was kept from earlier experiments, since it proved pretty successful. Running

this 100 times, the following performance statistics:

 Mean Standard deviation Minimum Maximum

Sensitivity 0.89 0.03 0.76 0.94

Precision 0.70 0.06 0.56 0.83

The worst case precision is relatively poor, probably caused by lots of emissions arriving at

approximately the same times. This could be analyzed further. Alternatively, one could

automatically retry the algorithm when the result is poor, and then use a different value for J, or

other parameter adjustments.

4.3.2 Randomly moved emissions on a resized time axis

In the previous section the emissions were moved randomly along the time axis in order to

provide new challenges to the deinterleaver. This can be combined with resizing the range of time

values of the emissions. Decreasing or increasing this size creates a, respectively denser or

sparser signal environment.

Figure 4.11 illustrates how the deinterleaving job gets gradually easier when the emissions are

distributed along a larger range of time values. This makes sense since, with a great time range

the emissions will not tend to overlap. This makes emissions easy to discover and reduces risk

that pulses from one emission get mixed in with pulses from another emission.

FFI-rapport 2013/00567 27

Figure 4.11 Precision and sensitivity when deinterleaving randomly moved emissions over time

spans (ranges) of different size.

The performance curve in Figure 4.11 oscillates quite rapidly, rather than increasing continuously

as the time span is increased. This is probably due to the random positioning of the emissions.

Figure 4.12 confirms this by computing the mean precision and sensitivity after deinterleaving ten

different, randomly arranged, sets of emissions for each time span. The oscillation is reduced

considerably, whilst the increasing trend remains as before.

 28 FFI-rapport 2013/00567

Figure 4.12 Mean precision and sensitivity when deinterleaving randomly moved emissions over

different time spans.

4.4 Further work

Further modifications can be made to the data in order to generate different realistic signal

environments. Currently, only suggestion (1) from section 4.3 has been exploited. The other

suggestions have different potentials. Particularly suggestions (2) and (3) seem relevant to the

deinterleaver, which only exploits the attributes TOA and amplitude, and only supports fixed

PRIs.

The random adjustments in this section can be replaced by more targeted testing, in order to better

understand the strengths and limitations of particular algorithms. For example, one could measure

how the performance changes as two or more emissions approach each other in time.

The methods in this report can also be used for optimizing algorithms with respect to multiple

parameters, before deploying the algorithm in a real scenario. Another very useful application of

these methods is to build a test suite, which could be used both for the check if new deinterleavers

meet certain requirements or that they keep meeting those requirements after modifications that

are made in order to meet additional requirements.

Finally, having input data with correct solutions, as well as ways to evaluate candidate solutions

against the correct solutions, give the potential of using various supervised learning methods in

FFI-rapport 2013/00567 29

future deinterleaving development. This depends on access to sufficiently representative data sets,

which can be accomplished by modifying existing data sets, as seen in section 4.3. However,

great care must be taken to preserve the realism and representativeness in the modified data, so

that the machine does not just learn faulty assumptions one makes about the data.

A challenging, but very powerful future addition, is be to design evaluation criteria that do not

depend on having a solution. However, developing such criteria may be almost as difficult as the

deinterleaving job itself, at least if the criteria are to be highly reliable. However, given such

criteria, one could apply them during an actual operation, to determine when a deinterleaving

result is good enough, to choose between different candidate solutions and to automatically adapt

the behavior of the deinterleaver during an operation.

5 Summary

This report has proposed some powerful criteria for evaluating clustering results against a model

solution. These criteria have been applied to deinterleaved navigation data in order to optimize

one deinterleaving algorithm and test two different deinterleaving algorithms. Discussion of the

results has also identified weaknesses in the criteria, and hence guided the choice of which

criteria to use.

Randomized testing was used in order to see how well the algorithm can cope with signal

environments of different density. Some possible further work and future applications were

discussed.

 30 FFI-rapport 2013/00567

Appendix A LINE Deinterleaver Algorithm, LINE_Deint

LINE_Deint uses the following configuring parameters:

- Sequence Length = N = 4

- Relative Jitter Tolerance = J = 0.04

- Missing Pulses Tolerance = M = 2

- Pulses Skipped = S = 0

The following input is given to the algorithm:

- A set, D, of ND data points, where each data point represents a pulse.

1) Remove half of the pulses – the 50% weakest (smallest amplitude) pulses.

2) Search for a sequence of N+1 consecutive pulses having a fixed PRI with

Jitter < J  mean(TOA).

o Allow a total of S pulses from other emitters between these pulses. If S > 0, the

algorithm quickly takes a lot more time. This has also proven unnecessary on

relevant data from LINE, so S=0 has been chosen.

3) Now include all pulses, also the ones removed in step 1.

4) Perform a simple sequence search forwards and backwards in time from the sequence that

was found. Stop the search whenever M consecutive pulses are missing in the sequence.

5) If a sequence was found in step 2, then the algorithm continues from step 1. Otherwise, the

algorithm is terminated. Each sequence found in an iteration of step 4 contains the pulses

from one emitter.

The time complexity (see Appendix B) LINE_Deint is O(ND(N + log(ND))), because S is

currently set to 0. The time complexity with respect to a variable S is

 ((
()

 ()
 ()))

(A.1)

This effectively means that LINE_Deint is dependent on finding a relatively uninterleaved

sequence of pulses after the amplitude filtering. Otherwise, the process becomes extremely

inefficient. However, some level of interleaving can be handled ok. For example, if N=4 and S=4,

then the term
()

 ()
 Becomes a constant, 8!/(4!4!)=70, which is quite manageable. N=7 and S=8,

giving a constant of 6435 might also be ok. On the other hand, N=20 and S=20, giving a constant

of 138 billion, could easily be a show-stopper.

Step (2), the one leading to all the complexity when S is variable, is quite a powerful step. It can

be applied without the amplitude filtering, or after some other filtering, for example based on

frequency or bearing. Although it is limited by the complexity of increasing parameters, it can be

quite useful, and one option is to first try it with only a small S (even S=0), before progressively

trying larger values of S.

FFI-rapport 2013/00567 31

Appendix B Complexity analysis and the big O notation

Complexity measures of an algorithm quantify how much of some resource will be used for the

execution of the algorithm. Time complexity and memory complexity are two common examples

of such measures. The big O notation, O(), is frequently used for expressing time complexity and

memory complexity in terms of the size of the input(s) to the algorithm. The big O notation

excludes every term of an expression, except the one of highest order, and also leaves out

constant coefficients. This makes it easy to compare the algorithms in terms of how well they

scale to large inputs and whether it is feasible to use an algorithm at all for large inputs.

Example: Consider the task of sorting a list of N names into ascending order. This problem can be

solved with the bubble-sort algorithm, which has time complexity O(N
2
). However, there are

much more efficient algorithms, such as merge-sort, with time complexity O(Nlog(N)), which is

proven to be optimal. An O(N
2
)-algorithm may still be more efficient than an O(Nlog(N))-

algorithm for inputs up to a certain size. However, when inputs get sufficiently large,

O(Nlog(N)) will be much better.

Memory complexity expresses the largest amount of memory that is required during the execution

of an algorithm. For example, an algorithm may depend on building an array with some

information about every input during the execution. This would have memory complexity O(N).

Another algorithm may require a 2-dimensional array of information relating every input to every

other input. This would have memory complexity O(N
2
).

So far, all analysis has been in terms of a single input size N, but an algorithm may have several

inputs of different quantities and different relevance to the efficiency. In this case, one may get

complexities like O(MN+N
2
) and O(M+N), in which neither term can be excluded because that

would suggest that the excluded input size could be increased arbitrarily without influencing the

efficiency of the algorithm. Thus, when there are several inputs, exclusion must be done with

respect to all variables, and with some more care than for a single variable.

Finally, when analyzing complexity, it can be useful to rank the order of some different

expressions. Knowing this ranking makes complexity analysis more efficient. The following list

ranks different expressions by the order of each expression, so that expressions of higher order

are to the left (separated by commas) or above ones of lower order. N is the variable size of the

input, a and b are real numbers greater than one, such that a > b:

 N
N
, N!, a

N
, b

N
, N

a
, N

b
, Nlog(N), N, N

b/a

 log(N) (Logarithms of different base are mutually equivalent, differing only by a

coefficient)

 log(log(N))

 a (Here „a‟ is simply a coefficient of N
0
, so O(a) can simply be written O(1)).

The determining criterion of the ranking is the limiting behavior of the expression as N tends

toward infinity. For further reading, please refer to (3) or another good text book on algorithmic

complexity analysis.

 32 FFI-rapport 2013/00567

Appendix C Algorithm for calculating TP, FN, FP and TN

Here follows a full description for calculating all of TP, FN, FP and TN, sensitivity, specificity and

accuracy. Justifications for the different steps of the algorithm were given in chapter 3.

1. Build the arrays Z, C and X as follows:

1.1. Initialize all elements in Zj,k, Ck, Xj to zero

1.2. For each data point, di:

1.2.1. j=AR(i)

1.2.2. k=AS(i)

1.2.3. Increment Zj,k by 1

1.2.4. Increment Ck by 1

1.2.5. Increment Xj by 1

2. Build the array Q as follows:

2.1. For each j,k

2.1.1.

3. The next equations reveal the values of TP, FN, FP, TN, sensitivity, specificity, precision and accuracy

3.1. ∑ ∑ () ⁄

3.2.
∑ ()

3.3.

3.4. (∑ (∑

)

) ⁄ ∑ ()

3.5. ∑ | | (| |)

3.6.

3.7.

3.8.

3.9.

3.10.
()

()

References

(1) Høye G et al (2013): "Pulse Descriptor Word (PDW) Simulator – Version 1.0", FFI-rapport

2013/00048

(2) Opland E (2012): “Problemstillinger, vurderinger og erfaringer I 1127 GEOIDE II i forbindelse

med pulssortering”, FFI-rapport 2012/01607 (Begrenset)

(3) Harel D (1987): “Algorithmics: The Spirit of Computing”, Addison-Wesley Publishing Company

