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English summary 

Deinterleaving is a fundamental step in a lot of processing in ESM and radar systems, enabling 

users and/or client programs to focus on data from a single emitter at a time, rather than a mixture 

of data from several emitters. 

 

When developing deinterleaving algorithms, it is sometimes useful to compare deinterleaving 

results with a model solution. Such a solution may be available because one has some alternative 

way of deinterleaving existing interleaved data, because one generates the data oneself, for 

example with a PDW simulator, or because one combines (interleaves) several existing non-

interleaved data sets. 

 

This report discusses some methods of assessing clustering results in the context of 

deinterleaving, and focuses on evaluation criteria that consider the problem of clustering as a 

binary classification problem, where the objects to be classified are all the possible pairs of 

distinct input points. A pair is classified as positive or negative, respectively, if the two points in 

the pair are in the same or different clusters. An efficient evaluation algorithm is developed, 

which avoids visiting every pair of points, but instead calculates the necessary information based 

on the sizes of clusters. 

 

Finally, the evaluation criteria are used along with some already deinterleaved data in order to 

optimize a key parameter to the LINE deinterleaving algorithm. This leads to a new choice of 

evaluation criterion that is more suitable to the current data set. The GEOIDE deinterleaving 

algorithm is tested on the same data and the results are discussed. The same data set is used for 

generating new data sets, by combining deinterleaved emissions in new ways. The new data sets 

are used for testing LINEs deinterleaver further. 
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Sammendrag 

Deinterleaving er et grunnleggende steg i ESM- og radarsystemer, og gjør det mulig for brukere 

og/eller programmer å fokusere på data fra en enkelt emitter, istedenfor en blanding av data fra 

flere emittere.  

 

Ved utvikling av deinterleavingsalgoritmer, er det noen ganger nyttig å sammenligne 

deinterleavingsresultater med en fasit. En fasit kan være tilgjengelig fordi man har en alternativ 

måte å deinterleave eksisterende interleavede data, fordi en genererer data selv, for eksempel ved 

hjelp av en PDW simulator, eller fordi man kombinerer (interleaver) flere eksisterende sett av 

ikke-interleavede pulsdata. 

 

Denne rapporten tar for seg noen metoder for å evaluere klyngingsresultater i forbindelse med 

deinterleaving, og fokuserer på evalueringskriterier som betrakter klynging som et binært 

klassifiseringsproblem, hvor objektene som skal klassifiseres er alle mulige par av distinkte 

inputpunkter (pulser). Et par er klassifisert som henholdsvis positivt eller negativt, dersom de to 

punktene i paret er i samme eller forskjellige grupper. En effektiv evalueringsalgoritme er 

utviklet, som unngår å besøke hvert mulig par av punkter, men i stedet beregner den nødvendige 

informasjon basert på størrelsene av punktklynger. 

 

Evalueringskriteriene brukes sammen med noen ferdig deinterleavede data for å optimalisere en 

viktig parameter i LINEs deinterleavingsalgoritme. Evalueringen av disse dataene leder til valg av 

et nytt evalueringskriterium, som er mer egnet til det gjeldende datasettet. GEOIDEs 

deinterleavingsalgoritme er testet på samme datasett, og resultatene diskuteres. Det samme 

datasettet brukes til å generere nye datasett, ved å sette emisjonene sammen på nye måter, og 

LINEs deinterleaver prøves på nye måter. 
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1 Introduction 

Deinterleaving is a fundamental step in a lot of processing in ESM and radar systems, enabling 

users and/or client programs to focus on data from a single emitter at a time, rather than a mixture 

of data from several emitters. Deinterleaving of pulsed signals is the problem of building groups 

of pulses, so that pulses originating from the same emitter are put in the same group, but pulses 

originating from different emitters are put in different groups. Deinterleaving can be quite easy or 

very difficult, depending on the signal environment, which parameters are available and to what 

extent different emitters are sufficiently different, with respect to these parameters. 

  

Having deinterleaved some pulses, it is very useful to be able to evaluate the result. This is 

valuable both during the development of deinterleaving algorithms and when applying them in 

practice. The ways to do this can be split into two main categories of approaches: 

 

 Approach 1: Check the result for agreement with an ideal solution. 

 Approach 2: Look at new data, or different attributes in the data to validate the result. 

 

Approach 2 is applicable to all stages of deinterleaving. For example, if one deinterleaved the 

data based on the assumption that each emitter transmitted pulses at a different radar frequency, 

one may use continuity in the pulse repetition interval and amplitude to strengthen the confidence 

in the result considerably. The LINE
1
 deinterleaving algorithm (Appendix A) takes an approach 

similar to this, using the amplitude to generate candidate pulse trains, and then stability in the PRI 

to confirm the result. Approach 2 can also be used for testing a deinterleaving algorithm, 

particularly if the validation is strong enough that one can assume the result to be sufficiently 

correct. The greatest strengths of this approach, compared with approach 1, are its wide 

applicability and the fact that one does not need to know the solution in advance. 

 

The greatest weakness of approach 2 is the (sometimes great) uncertainty of its correctness. This 

is avoided in approach 1, which uses a definitive answer, with which to compare the result. Of 

course, such an answer may be difficult or impossible to obtain, but that is another matter, which 

will be addressed below. However, given a perfect solution, approach 1 is guaranteed to give a 

definitive assessment, and given a good, but imperfect solution, approach 1 may still give a 

highly relevant answer. How to measure the agreement between a result and a solution is another 

matter that requires some consideration. This will be discussed in chapter 2. 

 

                                                           
1
 “LINE (LIten Navigasjonsradar ESM) was an activity at FFI that culminated in the spring of 2012 at 

Unified Vision 2012 (UV12), in which two experiment sensors were used to track ships by their navigation 

radars at Ørlandet. This was accomplished by combining the difference in the rotation phase of the radar 

(based on the strength of the signal received at each ESM-sensor) with the difference in the time of arrival 

(TDOA) of pulses at the two ESM-sensors. The two methods gave several geographical curves (arcs and 

half hyperbolas), such that the radar would be located at an intersection between the curves.” (Quoted 

directly from (1)). 
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There are several situations in which a sufficiently good ideal solution may be available. Here are 

some examples: 

 

1. One has some alternative way of deinterleaving existing interleaved data. Perhaps one is 

developing a deinterleaver that is meant to work in real-time with very limited hardware 

resources. In a lab environment, one may have access to abundant physical resources and 

be able to use the most sophisticated algorithm. One may even have a human available to 

do the job manually or help the algorithm with the most difficult tasks, since humans are 

frequently better at pattern discovery. This may enable the creation of excellent solutions 

to realistic problems, and then other deinterleavers can be tested against this solution. 

2. One generates the data oneself, for example with a PDW
2
 simulator. One may know 

enough about the process generating the pulses to make pretty realistic simulations, 

which can provide the solutions along with the input data. 

3. One combines existing non-interleaved data into an interleaved data set. Then each 

component that is being combined represents all the data from one single emitter, which 

can be used as a model solution. 

2 Measuring deinterleaving results against a model solution 

Given a model solution, a deinterleaving output can be automatically measured in a more reliable 

way than otherwise, and the quality of different deinterleaving results can be compared more 

easily. This can be used in order to optimize free parameters in the algorithm or improve the 

algorithm in other ways. It can also be used to assess the algorithm by exposing it to realistic 

scenarios for which real recordings are not yet available, to expose weaknesses and to identify the 

limits of the algorithm, both in terms of what kinds of inputs it can handle and the quality of the 

results for such inputs. These are key criteria, when determining whether the algorithm can be 

expected to meet the needs of a particular client program. 

2.1 Clustering 

Deinterleaving is a type of clustering problem. Clustering is the more general problem of 

grouping together data points, so that points within the same group are related to each other in 

some way, but less related to points within the other groups. For example, given time of arrival, 

radar frequency, pulse length, bearing and pulse repetition frequency of some pulses, a clustering 

algorithm may group together pulses with similar values for one or several of those measures. 

Exactly which pulses are grouped together, and on the bases of which criteria all depends which 

clustering algorithm is used and how it is configured. 

                                                           
2
 A pulse description word (PDW) is a description of the attributes of a particular pulse. Typically, it is a 

vector of numbers, where each number represents one attribute. 
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2.1.1 Terminology and conventions 

The following terminology and conventions are used when discussing clustering problems, results 

and solutions in the following sections. This list is relatively long, but it should make subsequent 

sections easier to read, and provides a single place of reference for the sections that follow. 

 

Concept Description 

Clustering 

Input 

A set D of ND data points, di (i ∈ {0, ..., ND})
3
. The index “i” will be used 

exclusively to refer to input data points, so that one can refer to the data point 

i or di interchangeably and without any ambiguity. Unless stated otherwise, i 

and di will refer to an arbitrary data point. 

Pairs of input 

data points 

It will be useful to discuss arbitrary pairs of input data points. (i1, i2) is used 

as a short-hand notation for any pair of data points, i1 and i2. 

Result Clusters A given clustering algorithm will group the input, D, into some number, NR, 

of clusters, known as result clusters. 

 

Let R be the set of result clusters, rj (j ∈ {0, ..., NR}), that is, outcomes of 

applying some clustering algorithm to D. Note that each rj is a subset of D. 

The index “j” will be used exclusively to refer to result clusters, so that one 

can refer to the result cluster j or dj interchangeably and without ambiguity.  

Unless stated otherwise, j and rj will refer to an arbitrary result cluster. 

 

Let r0 be reserved for unclustered data points, i.e. points that do not belong to 

any cluster. This is not actually a cluster, which would be self-contradictory, 

but, for convenience, is treated as part of the cluster set. 

Cluster 

Memebership 

Array 

Let the cluster membership of all the data points be represented by an array, 

AR, of length ND. The value of AR(i) gives the index, j, of the result cluster to 

which the data point i belongs. 

Clustering 

Solution 

A clustering solution is expressed just like a clustering result, except that the 

letters R, r and j are replaced, respectively, by the letters S, s and k. In 

particular, the terms S, sk, k, AS, NS and s0 mean the same about solution 

clusters as R, rj, j, AR, NR and r0 mean about result clusters. 

Big O notation, 

O() 

When discussing algorithms, concepts like time complexity, memory 

complexity and the big O notation, O(), are very useful. These concepts are 

explained in detail in Appendix B. 

 

                                                           
3
 A set, unlike a sequence, does not impose an order on the elements within it, but the elements here are still 

enumerated with natural number subscripts. This is only for ease of reference, and implies no meaningful 

ordering of the elements. 
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2.2 Measuring clustering results against a target solution 

Now consider the situation in which one knows in advance which points should, or should not, 

belong together in the same clusters, so that the quality of a result can be measured by comparing 

it to the solution. 

  

Measuring a result against a solution is complicated by the fact that there may be no definitive 

matching between each solution cluster and a corresponding result cluster. If there was, one way 

would be to simply consider each solution cluster in turn and check how many of the data points 

within that cluster have been correctly/incorrectly put in the corresponding result cluster. These 

two figures could then be measured against the total number of data points, and would provide a 

good basis for measuring the quality of a result, relative to the size of the problem. 

2.2.1 Matching solution clusters with result clusters 

As discussed above, there may be no definitive matching between solution clusters and result 

clusters. However, there may still be a very strong correspondence. For example, one result 

cluster, j, may contain 95% of the data points of some solution cluster, k. If so, then those 95% of 

the points have been correctly grouped together with each other (but not with the remaining 5% 

of sj), and so it may be reasonable to match j with k, and this matching can be discovered by 

checking which k has the most common elements with j. However, this may lead to conflict when 

trying to match up the other clusters. 

 

In order to find the optimal matching of result clusters with solution clusters, one may consider all 

possible ways of associating any j with any k, and see which set of matchings leads to the best 

performance. One great disadvantage of this approach is that, as the number of clusters grows, it 

leads to a combinatorial explosion in the number of ways one can match the result j with the 

solution k. In particular, based on the sizes of S and R, the number of such combinations is given 

by formula (2.1): 

 

            (     )  (
   (     )

   (     )
)  

   (     )  

(   (     )      (     )) 
 

  (   (     )  )      ( (  )   (  ) ) 

 

(2.1) 

Hence, the time complexity is effectively factorial (accounting for the worst cases) in the smallest 

of the inputs, and so unless either NR or NS is fairly small, this number is huge. For example, if 

NR=30 and NS=30, then the number of combinations is more than 10
32

, which would take tens of 

thousands of times the age of the universe to run on a modern computer, if it could run that long. 

In other words, even for fairly small problems, it will take the computer much too long to check 

all the different combinations.  

 

One can make some assumptions that reduce the time complexity to be completely manageable. 

For example, one can start with the largest result cluster, and then identify the best matching 

solution cluster. Then one could stick with that matching and progress in the same way with the 

remaining clusters. In general, one disadvantage of this approach is that one may misrepresent the 
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quality of the clustering in some cases. However, when this is the case, the clustering result is 

typically pretty poor anyway. Therefore, if ones goal is to distinguish pretty good clustering 

results from mediocre and poor clustering results, and one would also like to distinguish the very 

best clustering results from the slightly poorer (but potentially still excellent) clustering results, 

then this way of measuring results can be suitable. On the other hand, if one wants to compare 

mediocre or poor results with other results of approximately the same (mediocre or poor), but 

slightly different quality, then this measure may be totally misleading. 

 

Another disadvantage of matching result and solution clusters is that, even if one finds the 

optimal matching, it may in some cases not be a very fair measure. Suppose a solution cluster is 

split into two result clusters of approximately equal size. Then only the contents of the first result 

cluster will contribute to the positive performance. However, the data points in the second cluster 

were successfully grouped together – with each other, but not with the data points in the first 

cluster. This is just one example of how this method is frequently not the best expression of the 

quality of a clustering result. 

 

One positive property of this approach is that it can be easily visualized. Every data point is either 

in the right cluster or in the wrong cluster, which can be easily visualized, for example by a color 

in a plot of the input points. 

2.2.2 Considering all pairs of points 

Alternatively, one can consider the set, P, of all possible pairs of points, (     ) in D. There are 

ND(ND-1)/2 such data points. Then a clustering result or solution associates every such pair with 

truth values about whether the pair is in the same cluster or not, according to that clustering result 

or solution. Then, by inspecting AR(i1), AR(i2), AS(i1) and AS(i2) for every pair to determine 

whether both points are in the same result cluster and solution cluster, every pair can be assigned 

one of the following four categories: 

 

1. Correctly grouped together (True Positives, TP) 

- They are in the same result cluster and solution cluster 

2. Incorrectly grouped together (False Positives, FP) 

- They are in the same result cluster, but different solution clusters  

3. Incorrectly not grouped together (False Negatives, FN) 

- They are in different result clusters, but the same solution clusters 

4. Correctly not grouped together (True Negatives, TN) 

- They are in different result clusters and solutions clusters. 

 

Counting the number of pairs in each of the above categories, and associating these counts with 

the category labels, TP, FP, FN and TN, the following additional measures can be derived: 

 

 TPMax=TP+FN (2.2) 

 TNMax=TN+FP (2.3) 

 Sensitivity = TP / TPMax (2.4) 
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 Specificity = TN / TNMax (2.5) 

 Accuracy = (TP + TN) / (TPMax + TNMax) (2.6) 

 

TPMax and TNMax are the largest possible respective values of TP and TN, for a given problem. 

TP=TPMax and TN=TNMax are both true whenever a result is equal to the model solution with 

which one compares it.  

 

When counting the categories TP, FP, FN and TN, one must make special considerations for 

AR(i)=0 and AS(i)=0, since the value zero was reserved for unclustered data points. If one of the 

two points satisfies AR(i)=0, then they are not clustered together in the result, and if one of the 

two points satisfies AS(i)=0, then it is not clustered together in the solution. This is a trivial 

addition to the counting process, but important to include.  

 

It is worth noting that, for any clustering problem, there is a trivial solution, grouping all inputs 

together, giving a sensitivity of 1 (optimal) and another trivial solution, assigning a separate 

cluster to each data point (or putting them all in the unclustered group), giving a specificity of 1. 

Thus one cannot measure clustering well with only one of these criteria. One needs to either 

consider both or combine the criteria in some way. Accuracy is one such combination, which 

makes the assumption that false positives/negatives are equally bad. For now, specificity and 

sensitivity will be observed together. It will be seen lager (section 4.1) that specificity is not 

always a suitable, and an alternative criterion, precision, will be introduced. 

 

Note that categorizing each pair in P explicitly and hence counting the number of pairs in each 

category, TP, FP, TN, FN, has a time complexity of O(ND
2
), which is not remotely as bad as the 

factorial time complexity of combining result and solution clusters (2.2.1). Nevertheless, it can 

make quality measuring very time consuming as N grows large. Fortunately, one does not need to 

count all these pairs explicitly. This can be calculated much faster, with time complexity 

O(NDNRNS), as described in chapter 3. This is always better than O(ND
2
), since both NR and NS 

must always be smaller than ND. It makes no sense for there to be more clusters than data points, 

since some clusters would then have to be empty. 

3 Efficiently calculating TP, FP, FN and TN 

It is not necessary to read this rather technical section in order to follow the rest of this document, 

but it is included for completeness and for the interested reader, because evaluating clustering 

performance is a critical component of the work in this report, without which cluster quality 

evaluation would be much less efficient. Algorithm for calculating TP, FN, FP and TNAppendix 

C gives pseudo-code that implements the steps described in the rest of this chapter. 

3.1 Efficiently calculating TP 

Any pair of points, (i1, i2) is a true positive (TP) if and only if both points are within the same 

result and solution clusters, rj and sk. This is the case if and only if both points are within the 
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intersection
4
 rjsk. Given a 2-dimensional array, Z, of cardinalities

5
, Zj,k=|rjsk|, of each 

intersection, the total number of pairs of points within each intersection is Zj,k(Zj,k-1)/2. Finding 

Zj,k, for a particular intersection, can be done in O(ND) time by processing every data point, di, 

once, and incrementing a counter whenever AR(i) equals j and AS(i) equals k. 

 

In order to find the total number of TPs, one could repeat the process of the previous section for 

each intersection in turn, before adding together the values Zj,k(Zj,k-1)/2. This means that the 

process would be repeated NRNS times, making the whole calculation of TP require 

O(NDNRNS) processing time. Fortunately, there is a much more efficient alternative, based on 

the fact that each data point, di, is a member of exactly one of the intersections rjsk. 

 

1. Initialize all elements in Zj,k to zero. 

2. For each data point, di: 

2.1. j=AR(i) 

2.2. k=AS(i) 

2.3. Increment Zj,k by 1. 

3.     ∑ ∑      (      )  ⁄
  
   

  
    

 

Note that the unclustered elements at j=0 and k=0 are accounted for here by simply ignoring any 

j=0 and k=0 in the sums of step 3. This is correct because pairs that are unclustered in the result 

are (by definition) not positive and pairs that are unclustered in the solution can only be true if 

they are not positive. 

 

Steps 1 and 3 in the above algorithm have a time complexity of O(NRNS), whilst step 2 has time 

complexity ND. So, the whole algorithm has time complexity O(ND+NRNS). The memory 

complexity is O(NRNS), for storing the array Z. 

3.2 Efficiently calculating FN 

Recall that TPMax=TP+FN is the total number of pairs of points that should have been grouped 

together in an ideal case. TPMax is the maximum number of TPs that a clustering result could ever 

accomplish for a given problem. TP equals TPMax whenever the result clustering is equal to the 

solution clustering, so one can simply find the number of TPs for each solution cluster. 

 

The solution, by definition, cannot contain any FP, so all positives must be TPs. Thus all points 

within sk will be paired with all points that are not in sk. Given an array, C, of cardinalities, 

Ck=|sk|, of each solution cluster, the total number of such pairs for a given solution cluster, 

 

 

 

                                                           
4
 The intersection of two sets, A and B, is the set containing all elements that are both in A and B. 

5
 The cardinality, |S|, of any set, S, is the number of elements within S. 
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sk, is Ck(Ck -1)/2. C can be found by processing all points in D once, counting how many times 

each different value of AS(di) occurs. Then TPMax is given by formula (3.1): 

 

      ∑
   (    )

 

  

   

 
∑    (    )
  
   

 
 

 

(3.1) 

Notice that the summation ignores k=0, since the group of unclustered points does not contribute 

toward TPMax. One can now calculate FN by FN=TPMax-TP. Calculating TPMax does not depend 

on the clustering result, only the solution. Therefore, if many different clustering results are to be 

compared, for example in order to optimize cluster parameters, then TPMax can be calculated only 

once and reused for all cluster evaluations. This does not change the time complexity of the whole 

algorithm, but will reduce the execution time somewhat. The time and memory complexities for 

calculating FN are respectively O(ND+SD) and O(SD). These complexities are of lower order than 

the ones for TP, so they do not influence the overall complexity analysis. 

3.3 Efficiently calculating FP 

Every pair of clusters gives a certain contribution of FPs, similar to the calculation of TPs. For a 

given pair of clusters rj and sk, every point within the intersection, rjsk will be part of an FP with 

every point that is in rj but not sk. So, if one knew the size, Zj,k, of the intersection rjsk, and the 

size, Qj,k of the set difference
6
 rj\sk, then the contribution of FPs from the combination of rj and sk 

would be Zj,kQj,k. Zj,k has already been counted in section 3.1. Any given Qj,k can be calculated 

by formula (3.2): 

 

     |     | 

 

(3.2) 

The set difference operation removes from rj all elements contained in rj that are also in sk. These 

elements are the intersection rjsk, and so the formula is equivalent to: 

 

     |   (     )| 

 

(3.3) 

The elements in rjsk are all part of rj, and so the number of elements removed from rj by the set 

difference operation is the size, |rjsk|. Hence the formula can be simplified as follows: 

 

     |  |  |     |  |  |       

 

(3.4) 

Simply adding the products Zj,kQj,k together would count every FP twice. The reason for this is 

that every point, di, that is within an intersection with some result cluster rj is also outside another 

intersection with rj. So the sum must be divided by two. The sum must also ignore any points in 

r0, since these are explicitly unclustered, and therefore not false positives, or positives at all. 

 

                                                           
6
 Given two sets, S1 and S2, the set difference, S1\S2 is the set of elements that are in S1 but not in S2. 
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Finally, all points in some intersection, rjs0, do not only form FPs with points in the set 

differences rj\s0. They also form false positives with all other points within that intersection. Thus 

the number of pairs of points within those intersections must be added to the total count of FPs. 

These considerations lead to the following formula for calculating FP: 

 

   (∑(∑         

  

   

)

  

   

)  ⁄  ∑     (      )

  

   

 

 

(3.5) 

Having already calculated all Zj,k, this calculation has both time and memory complexity 

O(NRNS), which causes no increase in the complexity of the whole algorithm. 

3.4 Efficiently calculating TN 

Having already found FP, one only needs to find TNMax in order to calculate TN=TNMax-FP. 

Consider each solution cluster, sk. The points within sk should not be clustered with any points 

outside sk. Having already counted the number of points, |sk|, within each solution cluster, the 

number of points that are not within each solution cluster is easily calculated as ND-|sk|. Then 

TNMax is given by formula (3.6): 

 

      ∑|  |  (   |  |)

  

   

 

 

(3.6) 

Hence, TN can be easily calculated, and this part of the algorithm has time and memory 

complexities O(NS) and O(1) respectively. Again, this causes no increase in the complexity of the 

overall algorithm. 

3.5 Summary of the algorithmic complexity 

This chapter showed how TP, FN, FP and TN can be calculated, based on the sizes of result 

clusters, solution clusters, intersections, differences and complements of these sets. The algorithm 

is summarized with pseudo-code in Appendix C. The overall time complexity of the algorithm is 

O(ND+NRNS). The memory complexity is O(NRNS), which is pretty small except when there 

are a very large number of clusters. This is a great improvement compared with the time 

complexity O(ND
2
), which would inspect the cluster memberships of every pair of data points 

explicitly. 

4 Applying the evaluation criteria to real data 

The introduction mentioned three scenarios in which one may have access to an ideal solution, 

with which to compare a deinterleaving result. One situation was when the pulses were generated 

by a PDW simulator. This was the approach taken in (1), where the LINE deinterleaver was 

tested using data from the PDW simulator described in (1). The sensitivity and specificity criteria 

were optimized with respect to the relative jitter tolerance (J in the algorithm of Appendix A), and 
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then after the optimization, the performance was measured on other parts of the same data set. 

The optimization gave great improvements of the deinterleaving, which was verified by visual 

inspection of some of the cases. (1) also suggests some further applications of the PDW simulator 

data, in the context of deinterleaver development. 

 

In the following sections, the LINE deinterleaver is instead applied to real data, for which a 

solution has been developed manually in advance. Inputs and parameters are manipulated in order 

to optimize the deinterleaver and test it on new challenges. 

4.1 Using navigation radar data that have already been deinterleaved 

One interesting application, mentioned in the introduction, is to measure deinterleaving 

performance on a real data set. Figure 4.1 shows an example data set that will be used here. The 

data set shown in Figure 4.1 was first deinterleaved by the LINE deinterleaver, hereafter known 

as LINE_Deint, before the result was improved further using a manual deinterleaver, developed 

by the author. Figure 4.2 shows the results of this deinterleaving, and will be used as the solution, 

against which deinterleaving results will be compared. 

 

 

Figure 4.1 Amplitude (top) and radar frequency (bottom) plotted against time for an ESM 

recording of navigation radars. Numbers and further information about the data is 

left out in order to keep this report unclassified. 
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Figure 4.2 This figure shows the data from Figure 4.1 after careful deinterleaving. The result is 

presented with a different color for each emitter, but with only 18 different colors, 

since similar colors are hard to discriminate for a human reader. Therefore, colors 

are repeated for different emitters, which will be the case for all subsequent 

deinterleaving plots. The bottom plot shows the difference in TOA between 

consecutive pulses (i.e. the PRI). The deinterleaving result is not guaranteed to be 

correct throughout the plot, but it is more than good enough as a solution against 

which to compare the results of automated deinterleaving. 

 

This solution does not merge (put together) sequences of pulses when there are big gaps of time 

between the sequences. Hence, each emission is considered to be terminated when there is a big 

gap in time. Figure 3 shows an example of two such sequences, which have practically identical 

distributions, both of PRI (bottom plot) and frequency (middle plot). With merging, one would 

expect these to be put together. 
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Figure 4.3 Zoomed in version of two parts of Figure 4.2. The majority of the pulses in the 

rounded rectangles have practically the same PRI- and frequency-distributions and 

similar lobe shapes, suggesting that they may originate from the same emitter. 

 

Having created a solution, it is time to evaluate some results against the solution. Appendix A 

describes the LINE deinterleaving algorithm, which was also used in (1). One important 

parameter in LINE_Deint is the relative jitter tolerance; J. Figure 4.4 shows the performance 

criteria specificity and sensitivity, discussed earlier.  
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Figure 4.4 Specificity (green) and sensitivity (red) after using LINE_Deint, varying J from  

 0 to 5. 

 

There are two remarkable things to observe about Figure 4.4. Firstly, the greatest value of J is 5. 

This means that, in the search for sequences of pulses with a fixed PRI, one tolerates a leeway 

that is 5 times greater than the PRI itself. This is an enormous value, since the PRI normally does 

not vary by more than 20%, and that is already a lot. However, the remarkable observation is that 

the sensitivity remains as high as around 0.4, i.e. 40% of the pairs of pulses that should be 

grouped together are grouped together. The reason for this is probably that the data are relatively 

uninterleaved, in the first place. Many emissions overlap no other emission, and so, since the 

algorithm searches for sequences of consecutive uninterleaved pulses, it successfully finds these 

non-overlapping emissions. On the other hand, if the data had been highly interleaved, the large 

value of J would have likely caused more arbitrary deinterleaving results, and hence a lower 

performance. 

 

The second remarkable thing, which is even more remarkable, is that the specificity is 

approximately 0.99-1, independent of the value of J. In other words, the pairs of pulses that 

should not be together are not together, in most cases. 

 

The reason for the great specificities in this case, is that the data consist of lots of small emissions 

of data separated by relatively big time gaps (see e.g. Figure 4.3). Even if one (largely 

erroneously) grouped together many pulses that were relatively near each other in time, there 

would still be a much larger number of pulses, before and after a time gap, with which these 

pulses were successfully not grouped together. Hence the numerator in the right hand side of 

formula (2.5) is practically as big as the denominator. Unfortunately, this means the deinterleaver 

gets away with a great mark (specificity) for a terrible deinterleaving job, which is illustrated in 

Figure 4.5. Notice the rainbow patterns, which suggest that a new emitter is generated for nearly 

every pulse. 
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Figure 4.5 Zooming in on the result of applying LINE_Deint with J=5 to the data shows how 

terrible the result is, despite the respective specificity and sensitivity values of 0.99 

and 0.37. 

 

This shows that specificity does not necessarily say a lot, in absolute terms, about how well a 

result avoids forming the pairs that it is not supposed to form. Specificity may still be quite 

applicable as an optimization criterion, but then one could just as well use TN (section 2.2.2), 

from which specificity was derived, since the numerator, TNMax is independent of the result. An 

alternative criterion is precision, given as: 

 

           
  

(     )
 

(4.1) 

 

This is the proportion of the pairs that were rightfully formed, relative to the total number of pairs 

that were formed. This gives a much more reasonable performance curve, shown (with 

sensitivity) in Figure 4.6. The curves follow each other pretty closely for extreme values of J, but 

diverge for the more interesting values of J, below 0.5. 
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Figure 4.6 Precision (green) and sensitivity (red) for the same values of J as in Figure 4.4. 

 

Now, the performance can be analyzed further, by looking at the sensitivity and precision in the 

range J[0, 0.5], which is shown in Figure 4.7. J=0.15 gives a pretty good precision of nearly 

0.98, and a reasonably good sensitivity of 0.78. As one would expect, increasing J trades some of 

the precision for an improved sensitivity. Beware that the crossover point of the green and red 

curve is irrelevant. Instead, one should establish how important the precision is, relative to the 

sensitivity, which depends on the usage of the deinterleaver. 

 

 

Figure 4.7 Precision (green) and sensitivity (red) for the more interesting range from 0-0.5. 
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Figure 4.8 Deinterleaving result for J=0.15. 

 

Figure 4.8 shows deinterleaving results for J=0.15, choosing a high precision over some extra 

gain in sensitivity. Figure 4.9 zooms in on one part of Figure 4.8, giving a clearer look at how the 

deinterleaving goes. The left most part of the top plot of Figure 4.9 shows a lobe with some 

alternation in colors (perhaps beige and brown) along the lobe. This suggests that the 

deinterleaving has gone somewhat awry. Apart from that, the results look pretty good. However, 

zooming in further, as shown in Figure 4.10, reveals that one emission has been split into two 

halves. 
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Figure 4.9 Zoomed in version of Figure 4.8, showing some examples of where LINE_Deint 

succeeds or fails. 
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Figure 4.10 The right most lobes that were shown in Figure 4.9. Notice the transition in color of 

the brown lobe as it is about to intersect the other (grayish) lobe. In this case, the 

deinterleaver has split one actual emission into two perceived emissions. 

4.2 Testing the GEOIDE deinterleaver on the same data as for LINE_Deint 

During the GEOIDE projects, a deinterleaver was developed (here referred to as GEOIDE_Deint, 

intended to be used by other programs developed in GEOIDE. GEOIDE_Deint used frequency 

clustering followed by PRI-analysis for validation. It also had other features, which are not 

relevant to this discussion. For further details, please refer to (2). GEOIDE_Deint has some 

adjustable parameters, but it was designed to work autonomously, so they are not manipulated 

here. 

 

When applying GEOIDE_Deint to the example input from this chapter, it gives a result with 

sensitivity of 0.74, which is not bad, compared to LINE_Deint. However, it should be said that 

LINE_Deint was developed in a scenario where only time and amplitude was available, whilst 

GEOIDE_Deint also uses frequency. This means that the algorithms are competing on pretty 

different terms. Since LINE_Deint is not designed to utilize all data given to it, one really should 

expect it to perform worse than GEOIDE_Deint, although the opposite is the case, for many 

values of J. 
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Unfortunately, the result from GEOIDE_Deint gives a very low precision of 0.07. This is pretty 

terrible, since it means that only 7% of the pulse pairs that were formed should have actually been 

formed, thus most pairs are there by some error. However, this has the simple explanation that 

GEOIDE_Deint does some automated merging. Since the solution was built without merging, this 

gives a huge number of pairs that may be correct when merging is wanted, but is completely 

wrong in this context. 

 

A simple solution is to unmerge the results by looking for big time gaps within the data of each 

emission in turn, within the result produced by GEOIDE_Deint. After unmerging, the sensitivity 

was reduced to 0.72, but the precision was increased to 0.93. This result is not bad at all, although 

still not as good as the best results from LINE_Deint. However, the comparison is still somewhat 

unfair, since LINE_Deint, unlike GEOIDE_Deint, was optimized for this particular data set. 

Nevertheless, this illustrates how the real data with existing solutions can be used in order to 

choose between algorithms. 

 

This concludes the comparison with GEOIDE_Deint. The following sections will direct the focus 

toward testing LINE_Deint in different scenarios. 

4.3 Using the same data to generate new scenarios 

The deinterleaved data from this chapter can be modified in several ways in order to provide 

different challenges to the deinterleaver. Here are some suggestions for changes that can be made 

to one individual emission. Note that, each of the manipulations below is made on an individual 

emission, and not on the entire record: 

 

(1) Change the time the emission arrives by adding a constant to the TOAs of all the pulses. 

(2) Change the PRI by multiplying the TOA differences between consecutive pulses by a 

constant and modifying the TOA values accordingly. 

(3) Change the perceived distance between the emitter and the ESM sensor by multiplying all 

amplitude values by a constant. 

(4) Change the radar frequency, by adding a constant to the radar frequencies of all pulses. 

 

The following are more complex manipulations that could also be made to the data: 

 

(5) Change a fixed PRI pattern into a stagger pattern, by adding different constants to 

different subsets of the pulses, representing each pattern. Whether this would be realistic 

is not certain, and pulse attributes would also have to be carefully modified in order to 

account for the changes in the time between pulses. 

(6) Dwell switching could be simulated, by similar considerations as for stagger. 

(7) Radar frequency patterns could be simulated in similar ways as stagger and dwell 

switching. This may also be easier, as other parameters may not need adjustment. 
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All of the above modifications can be implemented on many or all emissions within a recording. 

Suggestion (1) preserves the realism of the original recording, but still provides plenty of 

opportunity for creating new scenarios. It will therefore be the focus in the following sections.  

4.3.1 Randomly moving every emission 

An easy way to use the original recording to create new challenges is to apply suggestion (1) to 

all the emissions, using a different random constant for each emission. This can be done 

repeatedly, exposing the deinterleaver to lots of different scenarios, sometimes with several 

emissions received at the same time, sometimes with emissions evenly distributed. Here, the 

constants were drawn from a uniform distribution, so that all the data stayed within the original 

time range. J=0.15 was kept from earlier experiments, since it proved pretty successful. Running 

this 100 times, the following performance statistics: 

 

 Mean Standard deviation Minimum Maximum 

Sensitivity 0.89 0.03 0.76 0.94 

Precision 0.70 0.06 0.56 0.83 

 

The worst case precision is relatively poor, probably caused by lots of emissions arriving at 

approximately the same times. This could be analyzed further. Alternatively, one could 

automatically retry the algorithm when the result is poor, and then use a different value for J, or 

other parameter adjustments. 

4.3.2 Randomly moved emissions on a resized time axis 

In the previous section the emissions were moved randomly along the time axis in order to 

provide new challenges to the deinterleaver. This can be combined with resizing the range of time 

values of the emissions. Decreasing or increasing this size creates a, respectively denser or 

sparser signal environment. 

 

Figure 4.11 illustrates how the deinterleaving job gets gradually easier when the emissions are 

distributed along a larger range of time values.  This makes sense since, with a great time range 

the emissions will not tend to overlap. This makes emissions easy to discover and reduces risk 

that pulses from one emission get mixed in with pulses from another emission. 
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Figure 4.11 Precision and sensitivity when deinterleaving randomly moved emissions over time 

spans (ranges) of different size. 

 

The performance curve in Figure 4.11 oscillates quite rapidly, rather than increasing continuously 

as the time span is increased. This is probably due to the random positioning of the emissions.  

Figure 4.12 confirms this by computing the mean precision and sensitivity after deinterleaving ten 

different, randomly arranged, sets of emissions for each time span. The oscillation is reduced 

considerably, whilst the increasing trend remains as before. 
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Figure 4.12 Mean precision and sensitivity when deinterleaving randomly moved emissions over 

different time spans. 

4.4 Further work 

Further modifications can be made to the data in order to generate different realistic signal 

environments. Currently, only suggestion (1) from section 4.3 has been exploited. The other 

suggestions have different potentials. Particularly suggestions (2) and (3) seem relevant to the 

deinterleaver, which only exploits the attributes TOA and amplitude, and only supports fixed 

PRIs. 

 

The random adjustments in this section can be replaced by more targeted testing, in order to better 

understand the strengths and limitations of particular algorithms. For example, one could measure 

how the performance changes as two or more emissions approach each other in time. 

The methods in this report can also be used for optimizing algorithms with respect to multiple 

parameters, before deploying the algorithm in a real scenario. Another very useful application of 

these methods is to build a test suite, which could be used both for the check if new deinterleavers 

meet certain requirements or that they keep meeting those requirements after modifications that 

are made in order to meet additional requirements. 

 

Finally, having input data with correct solutions, as well as ways to evaluate candidate solutions 

against the correct solutions, give the potential of using various supervised learning methods in 
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future deinterleaving development. This depends on access to sufficiently representative data sets, 

which can be accomplished by modifying existing data sets, as seen in section 4.3. However, 

great care must be taken to preserve the realism and representativeness in the modified data, so 

that the machine does not just learn faulty assumptions one makes about the data. 

 

A challenging, but very powerful future addition, is be to design evaluation criteria that do not 

depend on having a solution. However, developing such criteria may be almost as difficult as the 

deinterleaving job itself, at least if the criteria are to be highly reliable. However, given such 

criteria, one could apply them during an actual operation, to determine when a deinterleaving 

result is good enough, to choose between different candidate solutions and to automatically adapt 

the behavior of the deinterleaver during an operation. 

5 Summary 

This report has proposed some powerful criteria for evaluating clustering results against a model 

solution. These criteria have been applied to deinterleaved navigation data in order to optimize 

one deinterleaving algorithm and test two different deinterleaving algorithms. Discussion of the 

results has also identified weaknesses in the criteria, and hence guided the choice of which 

criteria to use. 

 

Randomized testing was used in order to see how well the algorithm can cope with signal 

environments of different density. Some possible further work and future applications were 

discussed.  
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Appendix A LINE Deinterleaver Algorithm, LINE_Deint 

LINE_Deint uses the following configuring parameters: 

- Sequence Length = N = 4 

- Relative Jitter Tolerance = J = 0.04 

- Missing Pulses Tolerance = M = 2 

- Pulses Skipped = S = 0 

The following input is given to the algorithm: 

- A set, D, of ND data points, where each data point represents a pulse. 

  

1) Remove half of the pulses – the 50% weakest (smallest amplitude) pulses. 

2) Search for a sequence of N+1 consecutive pulses having a fixed PRI with 

Jitter < J  mean(TOA). 

o Allow a total of S pulses from other emitters between these pulses. If S > 0, the 

algorithm quickly takes a lot more time. This has also proven unnecessary on 

relevant data from LINE, so S=0 has been chosen. 

3) Now include all pulses, also the ones removed in step 1. 

4) Perform a simple sequence search forwards and backwards in time from the sequence that 

was found. Stop the search whenever M consecutive pulses are missing in the sequence. 

5) If a sequence was found in step 2, then the algorithm continues from step 1. Otherwise, the 

algorithm is terminated. Each sequence found in an iteration of step 4 contains the pulses 

from one emitter. 

 

The time complexity (see Appendix B) LINE_Deint is O(ND(N + log(ND))), because S is 

currently set to 0. The time complexity with respect to a variable S is  

 

 (  (
(   ) 

  (   ) 
    (  ))) 

(A.1) 

 

This effectively means that LINE_Deint is dependent on finding a relatively uninterleaved 

sequence of pulses after the amplitude filtering. Otherwise, the process becomes extremely 

inefficient. However, some level of interleaving can be handled ok. For example, if N=4 and S=4, 

then the term 
(   ) 

  ( ) 
 Becomes a constant, 8!/(4!4!)=70, which is quite manageable. N=7 and S=8, 

giving a constant of 6435 might also be ok. On the other hand, N=20 and S=20, giving a constant 

of 138 billion, could easily be a show-stopper. 

 

Step (2), the one leading to all the complexity when S is variable, is quite a powerful step. It can 

be applied without the amplitude filtering, or after some other filtering, for example based on 

frequency or bearing. Although it is limited by the complexity of increasing parameters, it can be 

quite useful, and one option is to first try it with only a small S (even S=0), before progressively 

trying larger values of S. 
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Appendix B Complexity analysis and the big O notation 

Complexity measures of an algorithm quantify how much of some resource will be used for the 

execution of the algorithm. Time complexity and memory complexity are two common examples 

of such measures. The big O notation, O(), is frequently used for expressing time complexity and 

memory complexity in terms of the size of the input(s) to the algorithm. The big O notation 

excludes every term of an expression, except the one of highest order, and also leaves out 

constant coefficients. This makes it easy to compare the algorithms in terms of how well they 

scale to large inputs and whether it is feasible to use an algorithm at all for large inputs. 

 

Example: Consider the task of sorting a list of N names into ascending order. This problem can be 

solved with the bubble-sort algorithm, which has time complexity O(N
2
). However, there are 

much more efficient algorithms, such as merge-sort, with time complexity O(Nlog(N)), which is 

proven to be optimal. An O(N
2
)-algorithm may still be more efficient than an O(Nlog(N))-

algorithm for inputs up to a certain size. However, when inputs get sufficiently large, 

O(Nlog(N)) will be much better. 

 

Memory complexity expresses the largest amount of memory that is required during the execution 

of an algorithm. For example, an algorithm may depend on building an array with some 

information about every input during the execution. This would have memory complexity O(N). 

Another algorithm may require a 2-dimensional array of information relating every input to every 

other input. This would have memory complexity O(N
2
). 

 

So far, all analysis has been in terms of a single input size N, but an algorithm may have several 

inputs of different quantities and different relevance to the efficiency. In this case, one may get 

complexities like O(MN+N
2
) and O(M+N), in which neither term can be excluded because that 

would suggest that the excluded input size could be increased arbitrarily without influencing the 

efficiency of the algorithm. Thus, when there are several inputs, exclusion must be done with 

respect to all variables, and with some more care than for a single variable. 

 

Finally, when analyzing complexity, it can be useful to rank the order of some different 

expressions. Knowing this ranking makes complexity analysis more efficient. The following list 

ranks different expressions by the order of each expression, so that expressions of higher order 

are to the left (separated by commas) or above ones of lower order. N is the variable size of the 

input, a and b are real numbers greater than one, such that a > b:  

 N
N
, N!, a

N
, b

N
, N

a
, N

b
, Nlog(N), N, N

b/a
 

 log(N) (Logarithms of different base are mutually equivalent, differing only by a 

coefficient) 

 log(log(N)) 

 a (Here „a‟ is simply a coefficient of N
0
, so O(a) can simply be written O(1)). 

 

The determining criterion of the ranking is the limiting behavior of the expression as N tends 

toward infinity. For further reading, please refer to (3) or another good text book on algorithmic 

complexity analysis. 
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Appendix C Algorithm for calculating TP, FN, FP and TN 

Here follows a full description for calculating all of TP, FN, FP and TN, sensitivity, specificity and 

accuracy. Justifications for the different steps of the algorithm were given in chapter 3. 

 

1. Build the arrays Z, C and X as follows: 

1.1. Initialize all elements in Zj,k, Ck, Xj to zero 

1.2. For each data point, di: 

1.2.1. j=AR(i) 

1.2.2. k=AS(i) 

1.2.3. Increment Zj,k by 1 

1.2.4. Increment Ck by 1 

1.2.5. Increment Xj by 1 

2. Build the array Q as follows: 

2.1. For each j,k 

2.1.1.              

3. The next equations reveal the values of TP, FN, FP, TN, sensitivity, specificity, precision and accuracy 
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