FFl-rapport 2013/01547

Autonomous battalion simulation for training and

planning integrated with a command and control
information system

Anders Alstad, Rikke Amilde Lavlid, Solveig Bruvoll
and Martin Norman Nielsen

FFI Forst
forskningsinstitutt

FFl-rapport 2013/01547

Autonomous battalion simulation for training and planning
integrated with a command and control information system

Anders Alstad, Rikke Amilde Lavlid, Solveig Bruvoll and Martin Norman Nielsen

Norwegian Defence Research Establishment (FFI)

13 January 2014

FFI-rapport 2013/01547

1233

P: ISBN 978-82-464-2328-9
E: ISBN 978-82-464-2329-6

Keywords

Distribuert simulering
Modellering og simulering
Agenter

Kunstig intelligens

Approved by

Karsten Brathen Project Manager
Anders Eggen Director
2

FFl-rapport 2013/01547

English summary

Current Command and Staff training uses simulation systems that consist of computer generated
forces in combination with human operators. The human operators receive high level tasks (e.g.
company level) as input, transform these into lower level tasking for subordinate units (platoon
level and lower), and then they manually enter the more detailed sets of instructions into the
simulation system. A challenge in the case of training is that the amount of resources required
inhibits a high frequency of training events. The need for a large simulation supporting staff

is even more problematic if simulations were to be used more during operations in planning

or mission rehearsal, e.g. for what-if analysis. We are investigating how we can make a more
autonomous simulation system, which interfaces Command and Control Information Systems

(C21ISs) in a seamless way, minimizing the number of human operators.

In order to realize a seamless integration of a simulation system with a C2IS, an order made in
the C2IS must be expressed in a standard, unambiguous language, which is interpretable by the
simulation system. Also, to make the simulation system able to carry out higher level operations
(e.g. battalion operations) autonomously, the simulated forces must have sufficient knowledge

about tactics and doctrine.

In this report we describe the design and implementation of a first version of a demonstrator of

a simulation system capable of autonomous simulation of battalion operations. The simulation
system is integrated with a C2IS, which can be used to visually view and create orders, in addition
to presenting ground truth and perceived truth. The simulation system is capable of receiving and
executing orders created by the C2IS and providing reports back to the C2IS. In addition, the C2IS
is used to define the ORder of BATle (ORBAT) and provide the initial positions for friendly units.
The exchange of orders, reports and scenario definitions between the C2IS and the simulation
system are expressed in Coalition Battle Management Language (C-BML) and Military Scenario
Definition Language (MSDL), where C-BML is a standard under development for exchanging

orders interpretable by machines and MSDL is a standard language for describing scenarios.

The simulation system consists of a Multi-Agent System (MAS) and a commercial off the shelf
CGF system. Knowledge of higher level tactics and doctrine are implemented in the MAS, which
is used to control the entities in the CGF system. The agents in the MAS are organized in a
hierarchy and represent leaders and staff of military units. The behaviour model is based on the
human behaviour modelling paradigm Context-Based Reasoning (CxBR). The implementation of
the CxBR based MAS framework and the behaviour model implementation are documented in this

report.

The simulation system integrated with a C2IS was demonstrated for subject matter experts
(SME?s), and the response was generally positive. Feedback from SMEs, regarding possible
applications for such a system, what the system should and should not do etc., is summarized in

the report.

FFl-rapport 2013/01547 3

Sammendrag

Dagens simuleringsbaserte stabs- og ledertrening krever at operatgrer styrer simuleringen. Disse
operatgrene tar i mot kommandoer pa hgyere niva, som de bryter ned til oppgaver pa lavere

niva, som brukes til & styre datagenererte styrker. Ngdvendigheten av ekstra personell i form av
operatgrer begrenser hvor ofte det er mulig a trene. Dette gjgr det ogsé kostbart a bruke simulering
til evaluering av handlemater under operasjonsplanlegging. Vi jobber med & utvikle mer autonomt
simuleringssystem. Dette systemet kan blant annet kommunisere med et kommando og kontroll

informasjonssystem (K2IS) direkte, slik at mengden ngdvendig personell minimeres.

For a kunne integrere et simuleringssystem med et K2IS, ma ordren som lages i K2IS utrykkes i
et standard, utvetydig og maskinleselig sprak som simuleringssystemet forstar. I tillegg ma sim-
uleringssystemet vere i stand til & forsta og utfgre hgyere niva oppgaver, som betyr at de simulerte
styrkene ma ha tilstrekkelig kunnskap om standard taktikk og doktrine. Denne rapporten be-
skriver en fgrste versjon av en demonstrator av et simuleringssystem som er i stand til & autonomt

simulere en bataljonsoperasjon.

Simuleringssystemet er integrert med et K2IS som brukes til & se og definere ordre samt fglge
med pa status til egne og fiendtlige styrker. Simuleringssystemet kan ta i mot og utfgre ordre
definert i K2IS og sende rapporter tilbake. K2IS brukes ogsa til a definere oppdragsorganisasjon
og startposisjoner for egne styrker. Utveksling av ordre, rapporter og senariodefinisjoner mellom
K2IS og simuleringssystemet er utrykt i "Coalition Battle management Language" (C-BML) og
"Military Scenario Definition Language" (MSDL). C-BML er en standard under utvikling for

utveksling av maskinlesbare ordre og MSDL er en standard for & beskrive scenarier.

Simuleringssystemet bestar av et multiagentsystem sammen med et kommersielt tilgjengelig
system for datagenererte styrker. Kunnskap om hgyere niva taktikk og doktrine er implementert

i multiagentsystemet, som brukes til a kontrollere de datagenererte styrkene. Agentene i multia-
gentsystemet er organisert i et hierarki som representerer lederne med stab for de aktuelle militere
enhetene. Kontekstbasert resonnering (CxBR) er brukt til a modellere adferden til agentene, og

implementasjonen av dette CxBR-baserte agentrammeverket er hovedfokuset i denne rapporten.

Simuleringssystemet og hvordan det virker sammen med K2IS har blitt demonstrert for militaere
eksperter, og tilbakemeldingene var generelt positive. Tilbakemeldinger om mulige bruksomrader,

hva systemet bgr gjgre og ikke bgr gjgre osv. er oppsummert i slutten av denne rapporten.

4 FFl-rapport 2013/01547

Contents

3.1
3.2
3.3
3.4
3.5
3.5.1
3.5.2
3.5.3
3.54
3.5.5

4.1
4.2
4.3
4.4
45
4.5.1
452
46

5.1
5.2
5.3
5.4
5.41
5.4.2
543

Introduction
Objective and requirements

Applied technologies and applications
C-BML and MSDL

High level architecture

Intelligent agents

Context-based reasoning

VT MAK VR-Forces and VR-Link

Entity models and behaviour

Terrain

Radio communication, perceived truth, blue force tracking

Exercise clock

B-HAVE

System design

The command and control information system
Communication between the C2IS and the MAS

The multi-agent system

The CGF system

Communication between the MAS and the CGF system
Low-level BML

Time management

Final system configuration

Multi-agent system framework
Requirements

Approaches investigated

Architecture and design
Implementation

Communication services

Scenario initialization

Agents

FFl-rapport 2013/01547 5

10
10
11
11
13
14
14
15
15
16

17
17
18
19
20
20
20
20
21

22
22
23
24
26
26
27
28

54.4
5.4.5
54.6
5.4.7

6.1

6.1.1
6.1.2
6.1.3
6.2

6.2.1
6.2.2
6.2.3

7.1
7.2
7.2.1
7.2.2
7.2.3

8.1
8.2

9.1
9.2

Order processing
Simulation execution
CxBR implementation

Splitting of routes

Configuration and extensions of VR-Forces

Low-level BML plug-in

Low-level BML plug-in design

Low-level BML message set definition
Simulation model improvements

Use and customization of models in VR-Forces
Entity models

Formations

B-HAVE

Experiment

CxBR behaviour model
Scenario in VR-Forces

The terrain in the scenario
Testing of routes and positions

Red forces and their behaviour

Results
Possible applications and desired functionality

Comments on the current behaviour

Conclusions and future work
Topics for discussion

Future work

Bibliography

30
30
32
34

37
37
38
39
40
42
42
43
44

45
45
45
47
48
48

49
49
50

50
51
51

55

FFl-rapport 2013/01547

1 Introduction

Current Command and Staff training uses simulation systems that consist of computer generated
forces (CGF) in combination with human operators, so-called LOwer CONtrol operators (LO-
CONs). These LOCON:S receive high level tasking (e.g. company level) as input, transform this
into lower level tasking for subordinate units (platoon level and lower) and then they manually

enter this more detailed set of instructions into a simulation system.

Training events are usually big events where a large number of LOCONSs are required next to the
instructor staff. Besides the transformation of tasking, the LOCONs and instructor staff take care
of scenario initialization and trainee evaluation. Although the general idea is that these lower level
operators also benefit from this work, it is usually more difficult to train multiple levels because of

the generally different training goals for these levels.

A challenge in the case of training is that the amount of resources required inhibits a high fre-
quency of training events. If the number of LOCONSs could be reduced by (partial) automation
of their job, this could greatly enhance the number of training events and consequently mission

readiness.

Simulation systems can also be used during operations in planning or mission rehearsal, which
even more inhibit the use of a large simulation support staff. For instance, in the planning phase
of an operation, simulation systems can be used to do what-if analysis. In these circumstances the
war-fighter requires faster than real-time simulation speed and the need for LOCONS should be as
limited as possible.

The military simulation applications mentioned above would benefit from a capability that inter-
faces Command and Control Information Systems (C2ISs) with simulations in a seamless way,
minimizing the number of LOCONSs necessary. In order to realize this seamless integration, an or-
der made in the C2IS must be expressed in a standard, unambiguous language that is interpretable
by the simulation system, and the simulated forces must have sufficient knowledge about tactics
and doctrine to carry out the operation.

Since 2005 FFI has participated in NATO science and technology research groups that have
focused on developing a standard for a Coalition Battle Management Language (C-BML). C-BML
defines a standardized language for exchanging orders, requests and reports between C2ISs, CGF
systems and robotic forces [1]. Until 2012 FFI has participated in the C-BML standardization
effort through working with the standard itself and through providing a C-BML capable C2IS.
This C2IS capability has been created through the use of NORTaC-C2IS from Kongsberg Defence
Systems (KDS).

However, existing COTS CGF systems covering the land domain are in general not capable of
processing and simulating C-BML orders and requests. C-BML captures orders and requests in a

Command and Control (C2) language that typically addresses units at company level and above.

FFl-rapport 2013/01547 7

This requires that a C-BML compliant simulation systems models battle command for higher level

units.

In 2011 FFI and TNO started cooperating to create a C-BML capable CGF system in the frame-
work of the Anglo-Netherlands-Norwegian Cooperation Program (ANNCP). The motivation was
to enable autonomous simulation of orders created in a C2IS. In addition to providing experience
with implementing C-BML simulation capabilities, this activity also supported experimentation
with training without a large exercise staff and operational planning. The collaborative work with
TNO is described in [2] and [3].

The collaboration between TNO and FFI has focused on creating a C-BML capability based on

a common Commercial Of-The-Shelf (COTS) CGF system. Each nation has developed a Multi
Agent System (MAS) that is used in conjunction with VT MAK VR-Forces. These MASs have
been designed to process higher-level orders (e.g. a battalion order) and decompose them into
lower-level commands according to military tactics and doctrine. These low-level commands
have then been sent to and simulated by VR-Forces, which in return has provided simulation
state and low-level reports back to the MAS. Based on the received simulation state and low-level
reports the MAS simulates tactical decision making, in addition to providing high-level C-BML
reports back to the C2IS. VR-Forces combined with a MAS thus becomes a C-BML capable, more

autonomous CGF system.

Parallel to the ANNCP cooperation with TNO, FFI has also collaborated with Professor Avelino
J. Gonzalez, Director of the Intelligent Systems Laboratory at the University of Central Florida, to
investigate the use of Context-Based Reasoning (CxBR) for modelling of tactical command and
control and battle command. Our MAS has therefore been developed using the CxBR paradigm
[4,5, 6].

This report documents our effort of creating a demonstrator for autonomous simulation of bat-
talion operations integrated with a C2IS. This simulation system consists of a COTS CGF system
for low-level entity simulation combined with a MAS for higher-level tactical decision making.
The main objective and requirements for this system are listed in section 2. Section 3 provides
background information on the technologies used in the simulation system. An overview of the
total simulation system together with information about communication solutions between the
components are described in section 4. Section 5 goes into details about the implementation of the
MAS framework, and section 6 summarizes the extensions and configurations done in VR-Forces.
Information about the behaviour models we implemented in the MAS and the scenario we used to
test the simulation system is provided in section 7 and section 8 summarizes the feedback we got
after a demonstration for military experts. We conclude with topics for discussion and future work

in section 9.

8 FFl-rapport 2013/01547

2 Objective and requirements

The main objective of the demonstrated simulation system is to create a C-BML capable CGF
system capable of simulating Norwegian tactics and doctrine and by such enable experimentation

with training without a large exercise staff and operational planning.

The requirements are as follows:

Scenario initialization: Scenarios in the simulation system shall be initialized through scenario
initialization documents produced by and received from a C2IS.

Simulation of orders: The simulation system shall receive and simulate digitized orders pro-
duced by a C2IS.

Reporting of simulation state: Simulation state shall be sent as digitized reports to a C2IS.

Norwegian military doctrine: The execution of orders shall be simulated according to Norwe-
gian military doctrine and tactics.

Autonomity: The demonstrated simulation system shall be able to simulate the battalion opera-
tion without humans in the loop.

C-BML: Digitized orders and reports exchanged between systems shall be expressed using
C-BML [7]. More specific, the C-BML type Joint Battle Management Language (JBML) [8]
shall be used as this is already supported by the FFI C2-gateway [9].

MSDL: Military Scenario Definition Language (MSDL) [10] shall be used to encode scenario
initialization documents.

Multi-agent System: Military tactics and battle command shall be simulated using intelligent
agents for representing the leaders and staff in a military organization. These intelligent
agents shall be part of a MAS.

CxBR: CxBR shall be used to model the behaviour of the agents.

CGF system for entity simulation: Low-level entity simulation shall be left to a CGF system,
because we want to concentrate on modelling higher level tactics and battle command, and
because low-level entity simulation already is done well by existing CGF systems.

MAS independent of CGF system: The MAS shall be independent of the selected CGF system,
such that exchange of the CGF system at a later time becomes a simple task. This requires a
standardized language for communication between the MAS and the CGF system.

VR-Forces as CGF system: The CGF system for this version of the simulation system shall be
VR-Forces from VT MAK. This CGF system shall be used because both FFI and TNO
currently are using it and because it easily can be extended with new functionality.

Java: The MAS shall be programmed in Java, since the group is familiar with this language and it
is considered suitable for implementation of this type of system.

3 Applied technologies and applications

This section presents the technologies used and existing efforts in creating a C-BML capable CGF

system.

FFl-rapport 2013/01547 9

3.1 C-BML and MSDL

Battle Management Language (BML) is defined as "The unambiguous language used to command
and control forces and equipment conducting military operations and to provide for situational
awareness and a shared, common operational picture” [1]. C-BML is an attempt to standardize
digitized formats for orders, reports and requests for coalition operations. C-BML is being
developed not only to support inter-operation among C2ISs and simulation systems, but also to
describe the commander’s intent in a way that war-fighters can understand and make use of. As

such it will also be applicable to command and control systems and unmanned systems.

A C-BML order is based on the 5Ws, Who, What, When, Where, and Why. The most important
information elements are who is tasked (in our case which company), who issued the order (the
battalion commander), what are the tasks, including constraints telling when the task is to be
executed (time or dependency on other tasks), and control measures informing and restricting the

execution of tasks (boundary lines, axis of attack, phase lines, objective areas, routes, etc.).

MSDL is another language associated with C2-Simulation interoperability. Where C-BML is
intended to express orders and reports, MSDL is a standard for expressing military scenarios
independent of the application generating or using the scenario [10]. MSDL enables exchange
of all or parts of scenarios between C2ISs, simulations and scenario developing applications.
A scenario can include specifications of forces and sides, unit configurations and relationships,

locations, weather etc.

Both C-BML and MSDL is defined using an eXtensible Markup Language (XML) schema, and
there are efforts being made to ensure compatibility between these two languages [11].

3.2 High level architecture

To simulate large and complex system, it is often necessary to distribute parts of a simulation on
several computers. These computers can be located at different geographical locations, but the
result of the simulation should be the same as if they all were run on one computer. There are
several technologies available for connecting distributed simulations. In military modelling and
simulation it is common to use High Level Architecture (HLA) [12], which is why we have chosen
this technology for the communication between the MAS and the CGF system.

HLA can be described as a component based middleware architecture for simulation. This kind of
architecture is designed for dividing a simulation into smaller components and distributing these
components on several computers. These components can be reused in different simulations by
putting them together in new configurations, and they can be designed and implemented by experts
in the particular area of expertise that the component is representing. An interface between the
components (HLA) is needed for communication, and there must be a common interpretation of

the data that are exchanged between the components.

The common interpretation of the data that are exchanged is defined in the Federation Object

10 FFl-rapport 2013/01547

Model (FOM). A FOM describes what is simulated and what kind of data can be exchanged.
For military simulations, the exchanged data are typically aircraft, vessels, vehicles, sensors like
radar, radio, radio messages, etc. A FOM also describes how the data that are exchanged are
represented (in bits and bytes). The modelling and simulation projects at FFI have chosen the
Real-time Platform Reference (RPR) FOM version 2.17d as a standard [13]. When using HLA,
the simulation components are called federates. A federation is a collection of federates. While
a FOM apply to the whole federation, each federate can also define each own Simulation Object
Model (SOM). The SOM must be a subset of the federation’s FOM.

The interaction between the federates is managed by a Run-Time Infrastructure (RTT). There are
many different RTIs, and a comparison can be found in [14]. The latest HLA standard, IEEE
1516.2010, also known as HLA Evolved [15, 16, 17], has defined a Web Service (WS) interface,

which makes it possible to run distributed simulations over the internet with web technologies.

An older technology for distributed simulation is Distributed Interactive Simulation (DIS) [18].
It is based on a fixed data model, which makes it less flexible than HLLA, but which ensure
compatibility. Data is exchanged by multi-cast, so the simulation components should be on the
same local network. DIS is still frequently used and is in many cases compatible with HLA
through a gateway.

3.3 Intelligent agents

An agent is an autonomous entity that observes through sensors and acts upon its environment
using actuators in order to meet its design objectives. To be called intelligent, an agent also has to
be reactive, proactive and social; meaning it must be able to react to changes in the environment,

pursue goals and be able to communicate with other agents [19].

A Multi-Agent System (MAS) contains a number of agents that interact with one another. Each
agent will influence different parts of the environment, and the agents are linked by some kind
of organizational relationship. The agents in a MAS can be the same (homogeneous MAS) or
different (heterogeneous MAS), and they can be cooperative or self-interested. Motivations for
using a MAS can be to solve problems that are too large for a centralized agent alone, to allow
interconnection and interoperation of multiple legacy systems, or to offer conceptual clarity and

simplicity of design.

3.4 Context-based reasoning

CxBR is a paradigm for modelling the behaviour of intelligent agents. The motivation behind
CxBR is the realization that people only use a fraction of their knowledge at any given time.
The idea is to divide the knowledge into contexts in order to limit the number of possibilities for
the action selection process. The following gives a short introduction to CxBR including some

essential concepts. A more extensive description can be found in [4].

The contexts are organized in a context hierarchy consisting of a mission context, major and

FFl-rapport 2013/01547 11

Continue with plan

Close to
observed
enemy

Sees enemy
within threat Wait

distance (Default context)
or fired upon

Enemy small

Regroup enough to
engage

Figure 3.1 A context map defines all possible contexts and the transitions between them.

minor contexts. The mission context is a purely descriptive context, meaning it does not describe
behaviour. A mission context contains a goal and a plan for reaching it together with parameters
like objective areas, phase-lines, routes, etc., and a context map. A context map defines all possible

transitions between the major contexts, as illustrated in figure 3.1.

Major contexts constitute the next level in the context hierarchy and are the ones controlling the
agent. There is only one major context in control of the agent at any time, called the active context.
A major context basically contains three kinds of knowledge: action knowledge, transition

knowledge and declarative knowledge.

Action knowledge is knowledge about how the agent should behave in this context. Since our
agents are battle command agents, the actions are commands to the subordinates, reports to the
superior and possibly reports and/or requests to other agents at the same level. If a part of the
behaviour is shared with other major contexts, this behaviour should be expressed as a minor
context, which controls the agent for a short period of time. There can be unlimited levels of minor
contexts, but one or zero should be sufficient. Minor contexts are not used in the example model

presented in this report.

Knowledge of when to switch into another context is collected in the transition knowledge. This
includes recognition of a situation leading to deactivation of the active context and activation of a
better suited context. This knowledge can be contained in transition rules, with criteria for when
the agent makes the transitions defined in the context map. The transition rules consist of both
general, doctrinal reactions and scenario specific, planned transitions, and should include transition

to a default context when no other context is applicable.

Declarative knowledge includes other properties of the context, e.g. parameters and a list of

possible minor contexts.

12 FFl-rapport 2013/01547

VR-Forces VR-Forces VR-Forces
front-end back-end back-end

VR-Link

Figure 3.2 A VR-Forces simulation environment with two back-ends controlled by one front-end.
In such a setup one back-end may simulate the blue force, while the other simulate the

red force.

3.5 VT MAK VR-Forces and VR-Link

VR-Forces is a simulation environment and framework for CGF applications [20]. It comes with
a range of battlefield entities and weapon systems, but it is expected that the users extend and

configure it according to their own requirements [21, 22, 23].

VR-Forces consists of a front-end application and a back-end application. The back-end is the
actual CGF simulation engine, while the front-end is a graphical interface allowing a user to create,
manage and play scenarios. A VR-Forces CGF scenario can be scaled up by running multiple
front-ends and/or back-ends. All the VR-Forces applications communicate over a networking
toolkit named VR-Link. VR-Link provides a unified and extensible application programming
interface (API) that allows communication over multiple versions of both DIS and HLA. If the
user needs to communicate over HLA using an extension of the RPR FOM or a totally different
FOM, the VR-Link Code Generator application can be used to lighten the work. Figure 3.2
illustrates a typical VR-Forces simulation environment scaled up with two back-ends controlled by

one front-end.

In addition to being highly configurable, both the VR-Forces front-end and back-end can be
extended either by being embedded into another application or through plug-ins. In either case
the extensions will be done using the C++ API provided for VR-Forces and VR-Link. It is also
possible to control one or more back-ends through the VR-Forces Remote Control API. The
Remote Control API consists of a set of C++ classes that can be used to make your own front-end

or other type of remote controlling application.

Internally, the VR-Forces front-end utilizes the VR-Forces Remote Control API to perform
scenario management, tasking, and all other remote control of the back-end. The Remote Control
API creates messages in a closed VR-Forces proprietary format, wraps these messages inside
RawBinaryRadioSignal-interactions and sends these interactions over HLA or DIS.

The VR-Forces back-end simulates forces as either individual entities or aggregated entities. An

FFl-rapport 2013/01547 13

individual entity (normally referenced simply as an “entity”’) represents e.g. a tank, an aircraft

or a soldier, while an aggregated entity is a collection of entities typically corresponding to a
higher echelon organizational unit (e.g. a platoon). Aggregated entities can be simulated in either
disaggregated state or in aggregated state. In disaggregated state the subordinates are simulated as
individual entities, but coordinated by an aggregate controller. In aggregated state the subordinates
of the aggregate are not simulated separately. It is also possible to have aggregates of aggregates,
i.e. you may have a company aggregate controller that coordinates several platoons, which again

are coordinated by platoon aggregate controllers.

3.5.1 Entity models and behaviour

An entity model consists of sensors, controllers and actuators. Sensors detect different kinds of
input from the simulated environment. VR-Forces provides several generic sensors, like visual
sensor, infrared sensor, and active and passive radars. Each sensor has a parameter set describing
the sensor, e.g. the maximum range. Controllers calculate what to do based on sensory input and
models of the entity, weapon system, environment, etc., and send the result to the actuators. The
actuators are what make the entity actually do something that affects the situation, e.g make the

vehicle move, send a message or shoot.

The behaviours of the entities in a simulation are controlled through parameter values and tasks.
Set-commands are used to set parameters of the entity, for example ordered heading, ordered
speed, and rules of engagement. Task-commands are used to give simple tasks to the entity, like
movement along a provided route, attack, and wait. An entity tasked to move along a route will
follow the straight lines between the waypoints in the route, and not do any path planning. Attack
means to move towards a given position while shooting at all detected enemies within fire range.
The wait task is often used when the entity has no other tasks. The entity simply stays where it is,
without doing anything, except from monitoring the environment with its sensors. It is possible to
combine set-commands and task-commands in a plan using logic statements, like if, when, and

while. Lua scripts can be used to model more complex behaviour [24].

3.5.2 Terrain

The terrain is represented in MAK Terrain Format (GDB), which contains polygonal data with
corresponding surface information and vector data with associated information. The polygonal
data may consist of triangles, convex planar polygons, or a mix of these. The vector data consists
of points and edges. The edges can be connected in closed shapes to form areal features, or they
may form linear features, like roads. The associated information of a road may contain road width,
its name, or other useful specifications. There are several categories of terrain types, for example
water features include ocean, lakes, ponds, and shallow streams. Some of these categories are
represented as properties of polygonal data, while others are associated with vector data. Whether

or not a water feature is crossable depends on its properties, which are configurable.

Forests can be modelled as areal features or by single tree objects. Single trees are considered

14 FFl-rapport 2013/01547

obstacles and cannot be moved through. Whether a forest can be moved through depends on the
parameters associated to the areal feature. It is possible to allow movement through forests, or to

mark the forest inaccessible.

Line of sight calculations are done to check whether a visual sensor detects other entities, and
whether other entities can be shot directly at. The calculations are done by searching through

the triangles in the terrain to check whether any triangles intersect the straight line between two
given positions, for example two entities. When checking line of sight from an entity, it is possible
to specify the height of the observer on the entity. Forests are normally not accounted for when
determining line of sight. It is possible to specify that forests are totally opaque, but not that
visibility gradually decreases through forests. Single trees can be modelled, and each tree will then

be opaque. Inclusion of several single trees slows down the line of sight calculations.

3.5.3 Radio communication, perceived truth, blue force tracking

VR-Forces has a radio messaging system that is used for transmission of radio messages between
entities. Each entity can be equipped with one or more radios and can send messages with any of
its radios. The messaging system allows a message to be sent to one or multiple recipients with the
same type of radio. As default VR-Forces does not model radio propagation and signal loss, but

this can be added through either third-party software or self-developed models.

Spot reports represent one type of radio messages in VR-Forces. When spot reports are activated
and a sensor of an entity registers another entity, it immediately sends a spot report to the rest of
its force about the observation. There are five levels of entity identification. At the lowest level
the entity is not detected. At the next level it is registered that there is an entity of unknown type
and force, but its platform type is registered, for example ground. At the highest level all visible
information about the entity is known, including type of entity and which force it belongs to. For

each detection of an entity or update of the identification level, a new spot report is sent.

In addition to the ground truth containing all entity positions, each entity has a detection table
containing the entities it has detected or received spot reports about. Since it is possible to disable
broadcast of spot reports from all or a selection of entities, the detection tables of the entities in a

force need not be identical.

The standard settings use ground truth for the entities in own force, but it is possible to use spot

reports also for detection of own forces instead of ground truth.

3.5.4 Exercise clock

The exercise clock in VR-Forces manages the progression of time in the simulation. This is
done by ticking all the individual simulation components. A component tick provides the current
simulation time and executes the logic of the called component. The processing time needed

to tick all the components of the simulation differ depending on which events occur. E.g. if an
entity meets an obstacle, its actuator component might need to recalculate the route to the target

FFl-rapport 2013/01547 15

location. Because of the differences in tick processing time, VR-Forces provides three exercise
clock modes:

Variable-Frame Run-To-Complete mode advances the simulation time after each tick with the
processing time of the completed tick. As a result the simulation time since the last tick,
also referred to as a frame, depends on the processing time of the last tick. Because the
processing time is affected by other processes running on the same computer, the simulation
will not be repeatable. The frame length also depends on the amount and types of events that
occur in the simulation. Long frames cause loss of time granularity, as the simulated time
between component ticks increases. This becomes an even larger problem if the simulation
is run faster than real-time, because the simulation time then is advanced with the processing
time of the last tick multiplied with an acceleration factor. This mode should not be used in
time-managed HLA federations.

Fixed-Frame Best-Effort mode advances simulation time by a fixed amount each frame, mean-
ing the simulated time between two ticks will always be the same, even if the simulation
takes more than the fixed amount of time to compute. If less than the fixed amount of time is
used, the simulation sleeps until this amount of time has elapsed before continuing. When
running the simulation faster or slower than real-time in this mode, VR-forces adjusts the
fixed amount of time the simulation time should be advanced with for each tick. Instead
of this behaviour, we want the sleep time to decrease when we try to run the simulation
faster, assuming that the simulation usually are sleeping between ticks. The modification is
described in section 6.1.3. This mode requires that the hardware can handle the frame-rate,
and is then suitable for distributed use only in time-managed HLA federations.

Fixed-Frame Run-To-Complete mode advances simulation time by a fixed amount each frame,
even if a frame takes longer than the fixed amount to compute, like in Fixed-Frame Best-
Effort mode. The difference is that this mode does not sleep if the simulation takes less
than the fixed frame time to compute. The effect is that the simulated clock will go faster
or slower depending on processing time. In other words, the simulation will run as fast as
possible with the given frame length. This mode is most useful for situations where only the
end result of the simulation is interesting, while it is unnecessary to observe the simulation
execution. Fixed-Frame Run-To-Complete mode is therefore not suited for interactive use

and is suitable for distributed use only in time-managed HLA federations.

3.5.5 B-HAVE

B-HAVE [25] is a plug-in for VR-Forces that contains extended models for the behaviour of land
based entities, i.e. lifeforms and ground platforms. The functionality is based on Kynapse [26], a
library for modelling behaviour used in several video games. B-HAVE includes 3D path finding,

complex behaviour like hiding, fleeing from an enemy and wandering. B-HAVE makes it easier to
control entities as one does not have to specify routes to make sure entities avoid obstacles, move
around lakes, etc. The entities can be told to go to a location and through B-HAVE figure out how
to get there.

16 FFl-rapport 2013/01547

The path finding is based on construction of a navigation mesh and a corresponding graph. These
are constructed from the terrain model in a path data generation process. The path data depend on
the type of entity they are created for. The desired path is found by an A* search through the graph.
B-HAVE includes dynamic smoothing of the path during path following.

The path planning in B-HAVE has limitations. It distinguishes only between the terrain types
roads and non-roads, and it takes inaccessible areas into account. The path planning therefore
produces a route that avoids obstacles and is as short as possible. This path planning works best
along roads and in urban areas and is not particularly suited for rural areas, since slope and soil

types are not considered.

4 System design

We have developed a demonstrator of a simulation system capable of autonomous simulation of
battalion operations. This simulation system is integrated with a C2IS so that the C2IS can be used
to visually view and create orders, in addition to presenting ground truth and perceived truth from
the simulation system. The simulation system is capable of receiving and executing orders created
by the C2IS and providing reports back to the C2IS. The C2IS is also used to define the ORder
of BATtle (ORBAT) and to provide the initial positions of friendly units. C-BML and MSDL
documents are used to exchange orders, reports and scenario definitions between the C2IS and the

simulation system.

In order to simulate battalion level operations autonomously, the simulation system must be
able to understand and plan higher level commands like "seize area x" or "support by fire unit
y", and be able to react to unplanned events according to doctrine. In commercially available
CGF systems, like VR-Forces, only lower level tasks like "move along route" and "move into
formation" are supported. Since VR-Forces can be extended by writing plug-ins, it could be
possible to add models of higher level tactical behaviour and doctrinal knowledge in VR-Forces.
However, we chose to build a MAS independent of the CGF system in order to make it easy

to replace VR-Forces with another CGF system in the future. This MAS includes tactical and

doctrinal knowledge and is used to control the entities in VR-Forces.

The basic system architecture is illustrated in figure 4.1. Next we will give a brief description of
the functions and roles of the C2IS, the MAS and the CGF system, and provide details about the
communication between them. The MAS will be explained more thoroughly in section 5, and
details about extensions and configurations in the CGF system VR-Forces will be described in

section 6.

4.1 The command and control information system

The C2IS utilized in our system configuration is NORTaC-C2IS. Through previous NATO science
and technology groups this C2IS has been extended with functionality for defining and presenting

the information necessary for creating C-BML orders. This extension was implemented by

FFl-rapport 2013/01547 17

Simulation System

Regroup

y
e, S

Multi-agent System CGF System

Figure 4.1 The MAS gets as input an operational order at the battalion level and produces
commands to the CGF system. The agents’ actions are influenced by reports from the

CGF system. Reports are sent back to the C2IS.

KDS in collaboration with FFI. Orders created through this extension is stored in a NORTaC-
C2IS database that conforms well to the Multilateral Interoperability Programme (MIP) Joint
Consultation, Command and Control Information Exchange Data Model (JC3IEDM) [27].

In order to extract order definitions from the NORTaC-C2IS database and convert them into C-
BML orders, the FFI C2-gateway was created. This C2-gateway use SQL to extract order data
from NORTaC-C2IS and converts this data into C-BML documents that is sent through a message
broker. The C2-gateway is also capable of receiving C-BML reports over the same message broker
and inserting them into the NORTaC-C2IS database through SQL. The C2-gateway uses SQL to
extract the ORBAT and positions of units defined in the ORBAT from the NORTaC-C2IS database.
The ORBAT and the initial unit positions are utilized to construct an MSDL document for scenario
initialization. Like with the C-BML documents, this MSDL document is also sent through the

message broker to the simulation system.

NORTaC-C2IS combined with FFI C2-gateway thus function together as a C-BML capable
C2IS. More details about the NORTaC-C2IS extension and the FFI C2-gateway can be found in
[9, 28, 29].

4.2 Communication between the C2IS and the MAS

There currently exist several experimental infrastructures for exchanging C-BML and MSDL
documents. Through the C-BML NATO science and technology groups FFI have participated in
multiple experiments and demonstrations using different versions of the Scripted BML (SBML)
Server developed by George Mason University (GMU) [30, 31].

The SBML Server utilizes a GMU-developed language to define mappings from XML documents
(MSDL documents and different types of C-BML documents) to a JC3IEDM compliant database.
This mapping functionality is used to persist C-BML and MSDL documents. Documents are in-

serted into the server through either a SOAP or a REST web service. Documents sent to the server

is published to clients that has connected and subscribed using a Message Oriented Middleware

18 FFl-rapport 2013/01547

(MOM) called Java Message Service (JMS). The server also has functionality for merging multiple
MSDL documents. The FFI C2-gateway is capable of utilizing the functionality provided by the
SBML Server.

FFI has also updated the FFI C2-gateway to support the Coalition Battle Management Services
(CBMYS) created by Virginia Modeling, Analysis and Simulation Center (VMASC), but it has
never been used or tested. Like the SBML Server, CBMS is also capable of persisting and
publishing XML documents. CBMS uses REST-based web services for inserting documents

and Web Socket connections for allowing clients to subscribe to documents.

When we created our system configuration, both the SBML Server and CBMS were considered as
message brokers. As already mentioned the FFI C2-gateway has support for both. When we cre-
ated the system configuration described in this report, we found we did not need an infrastructure
with persistence, filtered subscription capabilities or MSDL merging. Instead we found that we
needed only a simple message broker that ensured that messages sent by one client were received
by all other clients. We also wanted the message broker to be maintenance free (e.g. not needing to

use external tools to reset a SQL database) and really simple to configure.

Both the SBML Server and CBMS fall short on these two last requirements. The SBML Server
has evolved to become relatively complex to install and configure, in addition to requiring clients
to use multiple communication technologies (i.e. REST or SOAP for inserting documents and
JMS for filtered subscriptions). CBMS appears simpler to install and configure, but also requires

clients to utilize two different communication technologies.

To meet our requirements for a lightweight and simple solution we chose to develop a basic
message broker using Web Sockets. This message broker consists of a Web Socket server that each
client connects to. The only functionality of the server is to forward received messages (i.e. MSDL
or C-BML documents) from a sending client to all other connected clients. The message broker
server requires no configuration or maintenance. The only configuration needed is for the clients to

know the port and host address of the server.

4.3 The multi-agent system

A battalion order consists of company tasks and how these should be synchronized. The MAS
decomposes the company tasks to low-level CGF commands through a hierarchy of intelligent
agents. There is one agent for the battalion, one for each company in the battalion and one for
each platoon. The agents represent the leaders with staff of these military units, and we try to
imitate the planning and decision making. Using a MAS for this purpose makes the design clear
and simple, and it becomes easy to understand for military experts. Simulation of the real chain of
command also prepares the system to be used for other tasks, like studies of communication in the

organization hierarchy.

How the agents carry out the ordered tasks depend on the terrain and observed enemies, which are

FFl-rapport 2013/01547 19

information provided by the CGF system. The agents react according to doctrine to unplanned
events, like the CGF entities being fired upon while not in an attack.

4.4 The CGF system

Units below platoons (i.e. squads, vehicles, soldiers) are not represented in the MAS and the
decomposition of platoon tasks to tasks for individual entities is handled by the CGF system. The
platoon aggregates are simulated in disaggregated state in VR-Forces. This was done foremost
because it allows a better visualization of close-combat situations.

4.5 Communication between the MAS and the CGF system

In order to allow the platoon agents to control the platoon aggregates in VR-Forces, simulation
state, reports and commands had to be exchanged between the MAS and VR-Forces. As described
in section 3.5, VR-Forces supports the communication standards HLA and DIS. We chose HLA as
the communication standard for all our simulation system internal communication, because it is
more flexible and extensible than the older standard DIS. As VR-Forces utilizes the RPR FOM, we
also chose to use this FOM [13].

451 Low-level BML

In addition to the simulation state already expressed through the RPR FOM, the MAS must be able
to send commands and scenario management messages to VR-Forces and receive reports back.

The VR-Forces Remote Control API has the necessary functionality to support these requirements,
but would bind our MAS to VR-Forces. Instead we developed Low-level BML [3]. This language

was developed in collaboration with TNO and consists of three main parts:

1. commands used by the MAS to instruct CGF entities,

2. reports from the CGF entities related to task status and status of the tactical environment
used by the agents to perform higher-level reasoning and

3. scenario management functions used by the MAS to initialize the CGF system and to create

control features in the CGF.

As we use HLA and the RPR FOM, we started out with making an extension of the RPR FOM
that defined interactions for the Low-level BML constructs. We later decided to instead encode the
Low-level BML constructs using Google Protocol Buffers [32] and wrap these encoded messages
inside the RPR FOM “Application Specific Radio Signal” interaction.

45.2 Time management

The battle command simulation done by the MAS and the entity simulation done by VR-Forces
must be synchronized in order to collaborate. I.e. tactical decisions must be made in a timely
fashion relative to state and situation changes, and the entities should not run ahead of the tactical

decisions.

20 FFl-rapport 2013/01547

A simulation can be run in either real-time (time progress at the same rate as your watch) or scaled-
time (time progress faster or slower than real-time). In simulation jargon, there is “wall clock
time” and “simulated time”. Wall clock time follows the human perceived real time, while the
simulated time is the time as perceived by the simulation. In a real-time simulation, the simulated
time rate of advance corresponds to the wall clock time. But in a scaled-time simulation they do
not correspond.

As our system configuration should support operational planning, the simulation system must
be able to run faster than real time. It must also be possible to pause and resume the simulation

without the different components getting out of synchronization.

The HLA time management functionality could have been used to synchronize the MAS and
VR-Forces [33]. This would have allowed us to ensure that none of the federates could run ahead
of others. HLA time management was not utilized for this version because in the beginning of the
project we got the impression that VR-Forces did not support this HLA feature. We later found
that the VR-Forces back-end actually supports time management. Another factor was lack of time

and that time management was not yet fully supported in FFI HLA Java library, HlaLib [34].

Instead of using HLA time management we chose to add a tick-message to Low-level BML,

and made the VR-Forces back-end send this tick-message with the current simulation time
approximately once every simulated second. In the MAS this tick-message triggered processing.
As there is no time management, VR-Forces will not wait for the MAS to provide commands as
a result of the current tick. A possible problem with this approach is that the MAS may not be
able to process incoming events fast enough and therefore may lose data or start to lag behind the
VR-Forces simulation. This solution was selected because it was quick and easy to implement
and because the mentioned issues only manifested themselves if VR-Forces was run at maximum

speed.

4.6 Final system configuration

Our final system architecture is illustrated in Figure 4.2. This figure illustrates all the applications

the total system consisted of and how these applications communicated.

FFl-rapport 2013/01547 21

Orders and Reports
C-BML Message Broker

Multi-Agent System

C‘QTSQ saL ==C2 Gétgway ‘ \:‘\
2UN\A — i @ %25 X

VR-Forges VR-Forces GUI
Simulation s —

was3ieor

BE =EEEE

High Level Architecture (HLA)
Tasks, commands and reports

Figure 4.2 The MAS receives as input a C-BML order at battalion level and produces commands
to the CGF system. The actions are influenced by reports from the CGF system.
Reports are sent back to the C21IS.

5 Multi-agent system framework

Having described the total system configuration, we will now focus on the design decisions and

implementation of a framework for the MAS. The first subsection describes the requirements for
the framework. Section 5.2 describes the approaches investigated, while section 5.3 describes the
architecture of the chosen approach. Implementation details, including how the different parts of

the framework work together, are described in section 5.4.

5.1 Requirements

The MAS framework shall allow intelligent agents to be implemented using CxBR concepts. The
agents shall act based on C-BML formatted battalion orders received from a C2IS. In order to
perform reasoning the behaviour models shall have access to data about the simulated environment
and react to events in the simulated environment, where the simulated environment consists of the
entity state simulated by the CGF system and control measures defined in the received C-BML

orders.

Entity state shall be accessed through HLA interactions and objects modelled using the RPR
FOM. The agents shall interact with the entities simulated in the CGF system through Low-level
BML commands sent over HLA. Entity events of interest for the agents shall be communicated as
Low-level BML reports sent by the CGF system.

A MSDL document from the C2IS representing the ORBAT shall be used to instantiate a battalion
agent, company agents and platoon agents. As the platoon agents shall correspond to platoon
aggregates in the CGF system, the MAS shall trigger the instantiation of these platoon aggregates
through Low-level BML scenario management messages.

22 FFl-rapport 2013/01547

5.2 Approaches investigated

This section provides an outline of implementation approaches we discarded and a short discus-

sion on why we chose the current approach.

In the beginning of the MAS framework development process, we started out researching existing
agent frameworks and rule-engines. We did this in order to find a way to represent the concepts

needed to implement intelligent agents and CxBR.

Early in this process our collaborating partners at TNO suggested to use the Java-based middle-
ware “Pogamut” to implement our agents. Pogamut is a software library for developing video
game agents [35]. While there are similarities, a CGF system like VR-Forces is not the same as
a video game. These differences aside, the concepts and architecture found in Pogamut did not

appear to fit well with our chosen CGF system and our research plans.

Both TNO and FFI therefore chose to abandon Pogamut and instead we started investigating

the Jadex agent framework [36]. Jadex allows for programming agents in XML and Java, using
Belief-Desire-Intetion (BDI) reasoning concepts. Our biggest issue with this framework was the
binding to BDI-based reasoning. The paper [37] describes how CxBR concepts maps to BDI
concepts. We considered utilizing these mapping ideas in order to realize CxBR concepts in Jadex.
After some considerations we found Jadex to be unsuitable for modelling CxBR concepts and

we considered the Jadex architecture to put too many restrictions on how our concepts could be

realized. Therefore we chose to look for a more generic approach that we could tailor to our needs.

CxBR concepts like switching between contexts, firing actions and so on can be modelled and
implemented in many ways. For example some implementations utilize neural networks or rule
engines (often referred to as “expert systems”). Neural networks can (among other things) be used
to implement self-learning agents and agents imitating how the human brain actually works. Both

are complex areas we found too complex for our current framework.

As we wanted to represent the CxBR action knowledge and transition knowledge as rules, we
researched existing Java-based rule-engines. The most mature and most used Java rule-engines
appears to be JBoss Drools [38], IBM ILOG JRules [39] and Jess [40]. The latter is a Java-port
of the NASA-based CLIPS rule-engine [41]. All three appears to use dedicated rule languages to
express rules and facts.

When choosing which rule-engine to use, we wanted an engine that could handle temporal
reasoning (i.e. event processing) and that integrated well with complex calculations implemented
in Java. JRules and Drools both have dedicated support for event processing, while it appears you
have to emulate it yourself in Jess. We wanted to have some complex calculations implemented
in Java because we found it cumbersome or impossible to implement these calculations in the
dedicated rule languages used by the rule engines. We therefore chose to investigate Drools
further, as it is open source and allow easy integration between rules and logic written in Java.

JRules was abandoned as it is closed source, expensive and very little information was available

FFl-rapport 2013/01547 23

Agents & Reasoning

il_‘il_‘

Agent Context

= | Transition Rule

= I Action Rule

Environment

Control Measures

Perceived Truth

Ground Truth Lu

1 1
1 1
Area ‘ Rute
1 1
1 1

_u Boundary ‘

Line

Phaseline

Services
Agent Engine Scenario Initialisation CGF Communication
Transition Rule X C-BML
Order Processing L
Evaluator Communication

Figure 5.1 Illustration of the parts and components of the MAS framework, roughly separated

into Agents and Reasoning, Simulation Environment and Services.

for evaluating it. Jess was abandoned because it used a cumbersome LISP-format and appears not

to offer the integration we wanted with calculations written in Java.

Through investigating Drools we found that this rule engine, like the other rule engines we
considered, expects all facts to be inserted into a knowledge base before finding and firing rules
that match the current set of facts. This became an issue because we only wanted to fire our
complex Java calculations depending on the situation. E.g. in some circumstances we only wanted
to calculate the force ratio against the enemy upon being fired upon. We could have performed all
the possible complex calculations once for each and every event and inserted the result into the
knowledge base, but the computational overhead would have been too large. Also, while Drools

offer good integration between rules and Java logic, we found it cumbersome and too restrictive.

After having fought with Drools some months, we decided to abandon dedicated rule engines
altogether and instead create our own dedicated CxBR-based MAS framework in plain Java. This
framework allowed us to conceptualize and implement the exact concepts we needed to fulfil our

requirements, instead of adjusting our concepts to a pre-exising rule engine.

5.3 Architecture and design

The MAS framework has been realized as a set of components and services designed to allow
simulation of tactical decisions through intelligent agents modelled using CxBR. The different

parts of the architecture is described below and illustrated in figure 5.1.

24 FFl-rapport 2013/01547

Agents and CxBR are a set of classes used to represent and instantiate agents, contexts and the
other CxBR concepts.

Simulation Environment is designed as components for allowing the agents and reasoning
functionality to operate on simulation state and control measures.

Services include communications services that provide services for communicating with the
C2IS and with the CGF system, and internal services that are necessary to drive the internal
functionality of the framework. The internal services are for example services for scenario

initialization, order processing, transition rule evaluation and the agent engine itself.

The MAS framework is designed to be event-driven. There are three types of events that trigger
processing: MSDL documents, C-BML order documents and tick messages. MSDL documents
and C-BML order documents are received from the C2IS, while tick messages are received as
Low-level BML messages from the CGF system. In the current system implementation the MSDL

document contains the ORBAT and the initial positions and orientations for the platoons.

Reception of a MSDL document triggers initialization of the MAS. Before receiving the MSDL
document, no agents are instantiated in the MAS and no friendly entities or aggregates exists

in the CGF system. In other words; when processing a MSDL document, the MAS framework
creates agents for the battalion, companies and platoons, in addition to sending commands to

the CGF system for creation of entities and aggregates for the platoons. Because the aggregate
creation commands are provided with the initial positions and orientations defined in the MSDL
document, the CGF system can instantiate the platoon aggregates and their subordinates at the
correct locations. The actual implementation of this scenario initialization process is described in
section 5.4.2.

The lowest-level agents, i.e. the platoon agents, command CGF aggregates and receive state from
the CGF aggregates. We wanted it to be transparent to the agent behaviour if it should delegate
to agent subordinates or to a CGF aggregate. We therefore created the concept of a “CGF agent”,
which is a special type of agent that takes care of receiving state and reports from the platoon
aggregates over HLA and sending commands the other way. During the scenario initialization
process all the lowest-level agents are assigned a CGF agent as a subordinate. The creation

and initialization of these CGF agents are further described in section 5.4.2. The structure and

functionality of the CGF agents are explained in section 5.4.3.

After being initialized, the MAS is ready for receiving a battalion order. Upon receiving a C-BML
order document the MAS framework will extract the company tasks in the battalion order and
convert them into company missions and mission start rules. These company missions and start
rules will be assigned to the battalion agent. The services and concepts used to realize the order

processing is further described in section 5.4.4.

When the MAS is initialized and a C-BML order has been received and processed, the agent
behaviour must be executed. This execution is triggered by tick messages. With our current

configuration the CGF system produces one tick message per simulated second. I.e. if the CGF

FFl-rapport 2013/01547 25

system is run faster than real-time, the wall-clock time between each tick message will be less than

one second.

Upon receiving a tick message, the MAS framework first updates all the agents before triggering
the actual agent behaviour processing. Updating an agent means different things if it is a CGF
agent or a battle command agent, but both has in common that they process new commands from
the superior. In addition the CGF agents copy the state from the HLA object representing the
corresponding CGF aggregate, checks if the aggregate has completed the last assigned task and
evaluates if it has threatening enemies. See section 5.4.3 for further details about the CGF agent

functionality.

In addition to processing new commands, the battle command agents also trigger evaluation of
their CxBR transition rules when being updated. This ensures that the agents utilize the correct
CxBR contexts when the agent behaviours are triggered as the next step in the tick message

processing.

After all agents have been updated, the agent behaviour is triggered for each agent. For all agents
the behaviour execution starts with checking if the current mission is completed. If it is completed,
a mission-completed report is sent to the superior. Further, agent behaviour execution means
ticking the current CxBR context for battle command agents, and sending of Low-level BML

commands to the CGF system for the CGF agents.

An important design decision is that the tick message process first updates all agents from lowest
level and up, before triggering agent behaviour for all agents from lowest level and up. L.e. the
CGF agents are updated before the platoons, the platoons before the companies, etc., before doing
the same sequence for the agent behaviour. This was done because all decisions and behaviour of
an agent is based on the reports from and states of its subordinates. E.g. to compute the position
of a company agent, the positions of its subordinate platoon agents are needed and so on. Also,
updating all agents before triggering the agent behaviour, ensures that all agents base their
decisions on the same state (otherwise two agents might see the state of a third agent differently
depending on the order they are processed). Agent functionality and reasoning is further described

in section 5.4.3.

5.4 Implementation

This section describes the implementation of the different concepts and components described in
the previous section. We will not describe all classes or services, only enough to explain how the

framework works and make it easy to understand the code.

5.4.1 Communication services

The MAS framework has two communication interfaces: one for the exchange of C-BML and

MSDL documents with the C2IS and one for low-level commands, reports and scenario man-

26 FFl-rapport 2013/01547

agement messages with the CGF system. The following sections describe how these two are

implemented as communication services.

Communication with the C2IS is implemented in the C2Communicator service. As described
in section 4.2, this service is a WebSocket client that receives C-BML and MSDL documents and

sends C-BML status report documents.

The MAS framework communicates with the CGF system over HLA. HLA communication is
controlled by the service CgfCommunicator. This service utilizes the FFI-developed library
HlaLib to manage all interaction with HLA [34]. In addition to forwarding Low-level BML
messages created by the other services, the CgfCommunicator service provides an API to
other parts of the system for creating entities, aggregates and control measures (routes, areas and
phase-lines) in the CGF system. The create-methods construct the corresponding Low-level BML
messages. All Low-level BML messages are sent to the CGF system by first being serialized to

a byte array using Google Protocol Buffers, before being wrapped in a RPR FOM Application
Specific Radio Signal.

The CgfCommunicator service also listens for ground truth information about aggregates
published by the CGF system, and publishes this information directly to the C2Communicator,
which generates and sends C-BML position reports. These aggregates may be both aggregates
defined in the VR-Forces scenario and aggregates created by the MAS framework.

The service BmnlMessageListener is registered as a listener for incoming RPR FOM Applic-
ation Specific Radio Signals. When such a radio signal is received, the contained data is decoded
into a Low-level BML report using Google Protocol Buffer and processed according to report
type. The supported report types are TickReports, TaskReports and SpotReports. Tick reports are
forwarded to the AgentEngine, task reports are sent to the corresponding CGF agent, while

spot reports are processed by the PerceivedTruth service.

5.4.2 Scenario initialization

Upon receiving a MSDL document, the C2Communicator calls the ScenarioInitializer
service to process the document. The ScenarioInitializer extracts all unit descriptions
from the MSDL document and builds up an internal “unit description” tree. After this extraction
process, the ScenarioInitializer utilizes the CgfCommunicator service to create
aggregates in the CGF system for each unit that does not have subordinates defined in the MSDL
document. The created aggregates are initialized with name, location, type, heading, formation and

a default rules of engagement set to hold-fire.

After creating the CGF aggregates, the ScenarioInitializer pushes the unit descrip-
tion tree to the OrderOfBatt le service. This service takes care of instantiating and initial-
izing the battle command agents. The agent initialization process uses the agent type (based
on symbol identifiers from the MSDL document) to fetch a “agent description” from the

DescriptionManager service. This agent description is further utilized to configure the

FFl-rapport 2013/01547 27

sd Scenario Initialization

% C2Communicator | (Scenariclnitializer| CgfCommunicator OrderOfBattle DesaoriptionManages|

C21s
! T T
! I I
onMessage{MSOL) | |
processMSDL{document)
L -
Lt

T
|
|
|
|
|
extractUnitDescriptions() :
|
|
oreateCgfEntities() |

[

oreateAggregateEntity{name, location, type,
heading, formation) !

[
-
setRulesCfEngagementiname, hold-fire)
.
>

setlnitHierarchyDesoripticn{roctUnitDesaription)

A |

createdgent{rootUnitDesoription)

getdgentDesaription{unitDesoiption. agentType)

Agent

constructdgent{unitDesciption. agentType)

—_————— e —]

Figure 5.2 Upon receiving a MSDL document from the C2IS, the scenario initialization process
creates aggregates in the CGF system and a hierarchy of battle command agents in
the MAS.

new battle command agent instance with transition rules and a default context. The scenario

initilization process is illustrated in figure 5.2.

The DescriptionManager service provides “agent description” for each potential “agent
type”. An agent description consists of a set of contexts, a default context, transition rules for
each context and universal transition rules. All this is used to correctly initialize a battle command
agent. To make the framework easy to configure, the DescriptionManager service can e.g.
extracts its descriptions from a XML file. For the current implementation we chose to use a coded

description manager. I.e. the agent descriptions are defined in Java code.

5.4.3 Agents

All agents implement the interface Agent. This makes it transparent for the scenario execution
algorithm (see 5.4.5) if it is a CGF agent, platoon agent, company agent or battalion agent that is
being updated or ticked. The Agent interface also makes it possible to implement agent logic (e.g.
CxBR rules) independent of actual agent type. The Agent interface is illustrated in listing 5.1.

A core concepts shared by all the agents is the event log. The event log is a kind of queue that

28 FFl-rapport 2013/01547

1 public interface Agent {

2 String getName () ;

3 void setName(String name);

4 Agent getSuperior();

5 void setSuperior (Agent superior);

6 List<Agent> getSubordinates () ;

7 void addSubordinate (Agent agent);

8 void setTransitionRuleEvaluator(TransitionRuleEvaluator
transitionRuleEvaluator) ;

9 Context getContext () ;

10 void setContext(Context context);

11 List<Context> getPlan () ;

12 WorldLocation getLocation ();

13 EventLog getEventLog();

14 void addEvent(Event event);

15 void update (double timestamp);

16 void tick (double timestamp);

17 PerceivedTruth getPerceivedTruth ()

18 }

Listing 5.1 The interface that all agents must implement.

is filled up with events between each tick from the CGF system. These events may be mission
commands, action commands and reports. All agents can produce and send events to any other
agent. In addition CGF agents can receive task completed reports from the CGF system (received

as a Low-level BML report via the BmnlMessageListener service).

The event log allows an agent to differ between new and old events, in addition to the sequence
of events. The EventLog implementation provides a set methods and predicate classes for

searching and filtering events.

All the agents also share a common PerceivedTruth service. This service receives Low-level
BML spot reports via the BmlMessageListener and maintains a simple operational picture
shared by all the agents. By “operational picture” we mean tracking of position and type of enemy

and neutral entities based on spot reports from all friendly entities.

Further, the agent implementations are divided into two main groups: battle command agents and
CGF agents.

5.4.3.1 Battle command agents

As the functionality of all battle command agents is mostly the same, they all extends from the
class AbstractAgent. The battalion agent differs from the company and platoon agent in that it
does not have a superior. Platoon agents have CGF agents as subordinates, but this is transparent
because all agents implement the Agent interface.

The MAS framework allows battle command agent implementations to be specialized according

FFl-rapport 2013/01547 29

to agent type. The core agent classes are P1latoon, Company and Battalion, but these can
be extended with e.g. MechanizedPlatoon. These extension classes can override methods
in the AbstractAgent with more specialized functionality. E.g. when processing received
mission commands, a specialized agent class can override the default Mi ssionPlanner. The

functionality of the MissionPlanner is further described in section 5.4.6.

It is worth noting that the Battalion class overrides the base functionality for processing new
commands. This is because the battalion agent does not have a superior that commands it, but
instead receives battalion orders from the C2IS and schedules the company missions defined in

these. This process is further detailed in section 5.4.4.

It should also be noted that as default the location for a battle command agent is calculated to be in

the center of all the subordinate locations.

5.4.3.2 CGF agents

As described in section 5.3, the CGF agents shields the battle command agents from HLA and
makes it transparent that the platoon agents actually are simulated in the CGF system.

The CgfAgent class makes this possible by using HlaLib to copy state from the corresponding
HLA object (simulated by the CGF system). It also converts mission commands (received in the
event log) into one or more Low-level BML commands using the CgfCommandProcessor

service and sends these commands to the CGF system via the CgfCommunicator.

5.4.4 Order processing

When the C2Communicator service receives a C-BML order it calls the OrderProcessor
service to process the order. The OrderProcessor service extracts all company tasks and
control measures with help from the Tbm1Parser service. The control measures are sent to
the CGF system through the CgfCommunicator service. The company tasks are linked to the
corresponding company agents and converted to CxBR missions. The list of company mission
contexts together with rules for when they should be initialized are added as a mission command

to the battalion agent’s event log.

Note that the OrderProcessor service must be extended when we want the MAS to support

more task verbs and control measures.

5.4.5 Simulation execution

The core service of the MAS framework is the AgentEngine. Every time the MAS framework
receives a tick message from the CGF system, this service drives the MAS framework by first
updating all the agents from lowest level and up (CGF agents - platoon agents - company agents -

battalion agent) and then triggering the agents’ behaviour.

30 FFl-rapport 2013/01547

5.4.5.1 Updating the CGF agent

Updating a CGF agent involves several steps:

1. Update Event log: The events which have been added to the agent’s event log since last
update is made available to the agent.

2. Update State from CGF': The agents state is updated by copying HLA-data from the entity
object corresponding to the CGF agent.

3. Report Threatening Enemies: The agent sends reports about potentially threatening enemies

to its superior by adding a report to its superior’s eventlog.

4. Process Mission Commands: If the event log contains new mission commands, these are
translated to Low-level BML by the CommandProcessor service. A mission command
might be converted into more than one BML task and/or set request, e.g. the mission
context Move generates the task sequence MovelntoFormation and MoveAlongRoute. Such a
sequence is referred to as the plan. The agent will abandon its current plan when it receives

a new mission command.
5. Check Task Completed: If the agent’s current task is completed, it is deleted from the plan.
This corresponds to a major context being completed.
5.4.5.2 Updating the battle command agent
Updating a battle command agent (platoon, company or battalion) involves a few slightly different
steps:
1. Update Event log

2. Process Mission Commands: The agent abandons its current plan and uses the service
MissionPlanner to generate a plan for the new mission context. The new plan is a

sequence of major contexts.

3. Evaluate Transition Rules: The service TransitionRuleEvaluator will evaluate all
relevant transition rules, based on the current major context, and possibly change major
context. If the agent just received a new mission context, the new current major context will

be the first in the new plan.
4. Check Context Completed: If the current major context is completed, and it is not the last in
the agent’s plan, the major context is deleted from the plan.
5.4.5.3 Executing behaviour of CGF agent

After all the agents are updated, their behaviour is triggered. For the CGF agent that means
sending a report to the superior if it has completed its current mission context and sending

FFl-rapport 2013/01547 31

commands to the CGF system. All new set requests are sent at once, but only the first task in the
plan is sent to the CGF system, provided that it has not been sent at an earlier time step.

5.4.5.4 Executing behaviour of battle command agent

The battle command agents will equivalently send a report to their superior if they have completed

their mission and then tick its active major context. Ticking a major context involves five steps:

1. Initialize: Some actions are to be performed when an agent enters the context. This step is

only carried out if the context has status not initialized.

2. Evaluate Action Rules: Perform actions based on reports and knowledge about the current

situation. The current situation is available through the PerceivedTruth service.

3. Evaluate Context State: If all subordinates have completed their mission, the state of the
major context is changed to completed.

The PerceivedTruth service is important for the agents’ decision making. It contains a list of
all enemies observed by friendly forces, and also all friendly entities observed by enemies. The
last is only used to report back to the C2IS. Every time a CGF entity reports a spotted entity of
another force, the observed information is merged with earlier observations. The service also
provides a function for extracting all spotted enemies within a given distance of a location.

5.4.6 CxBR implementation

The CxBR paradigm was explained in section 3.4. The key concepts were mission contexts,
which are planned as a sequence of major contexts. The major contexts contain action rules
and transition rules, and an agent has always one active context that is in control of the agent’s

behaviour. All these concepts are represented in the MAS framework.

The agents receive mission contexts, or as we have called them, mission commands, from their
superior. In the current implementation an agent does not store the mission command object
explicitly throughout the mission, but forgets what the mission is as soon as it has made a plan.
The idea is that all information needed to complete the mission lies in that plan. Note that the
mission command will always be available from the agent’s event log, as nothing is ever deleted

from this log.

The different major contexts are implemented as objects independent of the agent type, meaning
the same class is used to instantiate contexts for platoon and company agents. All action rules are
implemented as functions inside the context classes, except for the start rules used by the battalion
agent. Transition rules are also tied to major contexts, but these are implemented as separate

classes.

Which transition rules that are available to which major contexts is configured in the

DescriptionManager service. This service also makes it possible to define which con-

32 FFl-rapport 2013/01547

texts should be available for which agents, and add universal transition rules which are available in
all contexts for that agent type. In the experiments we used the same configurations for all agents.

The TransitionRuleEveluator service uses the configurations from the

DescriptionManager to evaluate the relevant transition rules.

When an agent receives a new mission command, it uses the MissionPlanner service to make
a plan for that mission context. This MissionPlanner service is the same for platoon and
company agents. The CGF agent has its own planner, and the battalion agent does not have a
planner, since his plan always consists of only one and the same major context, which we called
Schedule Order.

5.4.6.1 Planning

In [42] we propose a three step planning strategy. In the first step a basic plan for the current
mission context is retrieved. In step two the basic plan is adapted to the current situation by
pruning away irrelevant contexts and specifying the transition rules, and in step three the general
contexts from the basic plan could be replaced by more specific versions. Step three was only
described as a future possibility, since the current model does not contain specialized versions of

the basic major contexts used in the basic plans.

To explain how planning is implemented in the framework, we will use the planning of mission
context Seize as an example. In the current implementation the Seize mission requires a phase
line and routes for all the platoons. The basic plan for mission context Seize is (Move — Move
Cautiously —Attack). The phase line defines when to change from Move to Move Cautiously, and
the transition from Move Cautiously to Attack happens at a fixed distance from observed enemies

in the objective area.

Instead of adding transition rule (Cross phase line — Move Cautiously) to major context Move
and (Distance x from observed enemy — Attack) to major context Move Cautiously we decided
to make goals for each context in the plan and then use a general transition rule (Context com-
pleted AND plan not empty — Next context in plan). This general transition rule can safely be
added to all major contexts, meaning it is independent of mission context. Transition rule (Cross
phase line — Move Cautiously) could not be added safely to major context Move because other
agents with other mission contexts could enter this context, and the transition rules are connected
to the class and not just one instance of the class. A goal for a major context on the other hand, is

specific for one instance of that class.

When planning mission context Seize, the goal for each major context is defined by splitting the
route for the mission into three parts, one for the Move context, one for the Move Cautiously
context and one for the Aftack context. A context is completed when the agent is at the end of
the route. The route for context Move is the part of the total route that is between the agent and
the phase line. If the route starts after the agent has crossed the phase line, major context Move

is pruned away. The part of the route belonging to the major context Arfack, is the last part of the

FFl-rapport 2013/01547 33

mission route, starting at a distance x from observed enemies in the objective area associated with
the mission. The actual distance used in the experiments is defined in table 7.2. If there are no
observed enemies in the objective area, major context Aftack will not be a part of the plan, i.e. it
will be pruned away in step 2 of the planning process. The remaining part of the route, between

Move and Attack belongs to major context Move Cautiously.

5.4.6.2 Reactive behaviour

When unplanned events occur that forces an agent to deviate from a plan, other transition rules
than "proceed with plan" will fire. When a transition rule fires, the agent’s active context is
replaced by the new context provided by the rule. This new major context is added first in the
agent’s plan. If the previous active context was completed, it is deleted from the plan, if not,

it is kept as the next context. If the previous active context is kept, its status is changed to not
initialized, so that the actions the agents should take when entering the context is repeated when

the agent re-enters.

The way major contexts are added to an agents plan as a part of reacting to unplanned events could
be interpreted as re-planning. However, the remaining part of the original plan is still a part of the
new plan. Re-planning would mean going through the three planning steps again as the situation
changes. The current implementation does not support this kind of re-planning, and there is no
mechanism for checking whether the plan still is valid, i.e. will fulfil the mission context, as the

situation changes.

5.4.7 Splitting of routes

Both during planning and when continuing a route after an interruption we might need to split a

route. This is done in the class Route, and the algorithms are described next.

5.4.7.1 Splitting of routes during planning

In the current version a set of detailed routes are sent from the C2IS system to the MAS. The set
of routes contains one route for each platoon. As explained, each route may be divided into a set
of subroutes during the planning process, each subroute connected to a context in the platoon’s
plan. The routes are split to fit the contexts in two cases, either by splitting the routes when they
cross specific phase lines, as shown in Figure 5.3, or by splitting at the position where the route
comes nearer than a given distance to a specific position, as shown in Figure 5.4. These two cases
are implemented slightly differently.

A route consists of an array with locations in the order they are to be visited, and a phase line
consists of two locations. When a route is to be split when crossing a phase line, we propagate
through the array, checking whether each line segment of the route crosses the phase line. After
determining which line segment that intersects the phase line, we split the route into two subroutes.
The first part contains all locations before the intersection point, while the second part contains all

locations after the intersection point.

34 FFl-rapport 2013/01547

Route

/Sccond route
d >
S
Phaseline Phaseline
First route

(a) A route crossing a phase line. (b) The route is split into two new routes.

Figure 5.3 A route is split into two subroutes if it crosses a phase line.

Target position

Target position

Second route

Circular area Circular area

First route

(a) A route entering the circular area. (b) The route is split into two new routes.

Figure 5.4 A route is split into two subroutes if it enters the circular area of a given radius

around the target position.

FFl-rapport 2013/01547 35

When a route is to be split when it comes nearer than a given distance to a specific position, we
construct a levelset function. This function is zero in all positions on the circle with the exact
distance to the specific position, negative at positions further away and positive at positions closer
to the specific position. We evaluate the levelset function at all locations in the route, and when
the sign of the function value changes, the route crosses the circle and is to be split. All locations
before the route intersects the circle are inserted in one route, while the remaining locations are

inserted in a second route.

When the original route is split into two subroutes, we check the distance between the last location
in the first route and the first location in the second route, shown as d in Figures 5.3b and 5.4b.
This is to ensure smooth transitions when a platoon switches from the first to the second route,

in particular if it at the same time changes formation. If the distance is too long, a change of
formation is done over a long distance. To ensure a suitable distance between the two routes,

we insert extra locations in either one of or both routes if the distance is too long. The limits for
accepted distances are based on the distance from the first entity to the last one in the possible
platoon formations, see section 6.2.2. The maximum length for a formation change should be
longer than half the length of the longest formation, but not significantly longer. The longest
formation is the custom column formation shown in Figure 6.5a, with a length of 150 m, and the

maximum formation change distance is set to 100 meters.

5.4.7.2 Computing the remaining part of a route

If an entity during the simulation has deviated from its route, for example when attacking an
unexpected enemy, we want it to afterwards continue following its original route. Retasking the
entity to follow the original route in some cases causes the entity to move in the wrong direction
to reach a node on the route before starting to move along the route. We therefore implemented a
method that computed the remaining part of its route and tasked the entity to follow the remaining
route. This method is illustrated in figure 5.5, where the red circle represents the entity, and the
route is represented as black nodes connected by edges. We first compute the point along the route
that is the nearest point to the entity, marked with a grey circle. Thereafter we determine which of
the nodes that is the first after the grey circle. This is node p3 in the example. The last nodes along
the route starting from this node form the remaining route, which in the example consists of p3
and p4.

36 FFl-rapport 2013/01547

P4

Ps

b2 Nearest position on the route

Route) »
o Entity position

Figure 5.5 Computation of the remaining part of a route.

6 Configuration and extensions of VR-Forces

The CGF entities were simulated in VR-Forces. Section 6.1 describes the extensions we made to
VR-Forces in order to control the entities from the MAS, and section 6.2 explains the customiza-

tions we made to the models in VR-Forces.

6.1 Low-level BML plug-in

Table 6.1 lists the Low-level BML message set that was implemented in the Low level BML
plug-in. The messages consist of the message type and additional parameters. The messages were
serialized to binary form with the use of Google Protocol Buffers (ProtoBuf) and transmitted
between the MAS and the Low-level BML plug-in using HLA and the ApplicationSpecificRadi-
oSignal interactions of the RPR-FOM.

Extensions and customization of the VR-Forces front-end and back-end can be made by either
using the VR-Forces framework to create a custom application or by having VR-Forces load

custom plug-ins at runtime. For our purposes it was sufficient to use the plug-in architecture of

Scenario Management Orders Reporting
Create area Set concealed posture Fired upon
Create aggregate Move along route Force assessment
Create aggregate from entities ~ Move into formation Spot reports
Create entity Reporting responsibility Task status
Create phase line Rules of engagement

Create route Wait

Tick

Table 6.1 Listing of the Low-level BML message set.

FFl-rapport 2013/01547 37

HLA

VR Forces
Back end

BmlIPlugin

‘Communications Simulation
Interface Models

VR Forces
Front end

BmlCommandReceiver

* CreateAggregateEntityCommmand
* CreateAggregateFromEntities-

Command

¢ CreateAreaCommand

Figure 6.1 Federation view of the Low-level BML plug-in.

Communications interface

BmlReceiver

|

BmlSubscriptionReceiver

RegisterFiredUponSubscription
RegisterForceCalculation-
Subscription
RegisterSpotReportSubscription

BmiTaskReceiver

* MoveAlongRouteTask
* MovelntoFormationTask
* WaitTask

* CreateEntityCommand

* CreatePhaseLineCommand

* CreateRouteCommand

* SetConcealedCommand

* SetRulesOfEngagementCommand

Figure 6.2 Communications interface of the Low-level BML plug-in.

the VR-Forces back-end to augment simulation models and extend the communications interface
with Low-level BML. We hereby refer to our VR-Forces extensions as the Low-level BML plug-in.
Figure 6.1 depicts the relationship between the HLA-based components.

6.1.1 Low-level BML plug-in design

The Low-level BML plug-in is loaded by the simulation engine when VR-Forces is started. All of
the different components are however not instantiated straight away. The Communications inter-
face is started together with the simulation engine. It can therefore accept commands immediately.
The current commands, tasks and subscription requests have no meaning without a scenario and
will therefore be ignored until one is manually loaded by the operator. In the future one could
consider adding e.g. support for commands that can load scenario and terrain data. Figure 6.2
depicts the Communications interface component.

Messages from the MAS are received by the LowLevelBmlReceiver and routed to the

38 FFl-rapport 2013/01547

Simulation models

BmlExerciseClock BmlSpotReportGenerator

BmlEnemyStrengthCalculator BmlVisualSensorPropagator

BmlFiredUponSensor BmiSimTaskManager

BmlPeriodicTick

Figure 6.3 Simulation models implemented in the Low-level BML plug-in.

appropriate handler. The handlers are implemented as standalone classes with a well-defined
interface, and it is straightforward to implement new handlers and register these with the

LowLevelBmlReceiver.

Some of the commands e.g. RegisterSpotReportSubscription interact directly with the
model implementation of e.g. Spot Report Generators that are attached to entities with sensors.
The models are independent of the Communications interface, but offer an API that the handlers
can use. The models publish messages to the MAS directly through HLA without using the
Communications interface. The implemented simulation models are depicted in Figure 6.3. The
simulation models are loaded together with the VR-Forces scenario and instantiated together with
the entities they are part of. The only model that is always instantiated even in an empty scenario

isthe BmlExerciseClock which keeps track of simulated time.

6.1.2 Low-level BML message set definition

The messages that are sent between the MAS and the Low-level BML plug-in are defined in the
ProtoBuf format. There are several reasons for using ProtoBuf. Firstly, defining and maintaining
message definitions is easier and more readable in ProtoBuf format than with HLA FOMs.
Secondly, ProtoBuf has a very efficient serialization engine with regards to both speed and the size
of the serialized data. Thirdly, the ProtoBuf library can automatically generate the source code
necessary to (de-)serialize the data for most popular programming languages, including Java and
C++. The last point was decisive. While evolving the Low-level BML it was found valuable to
be able to quickly generate (de-)serialization code for both the MAS and the CGF tool. The code
generator for VR-Forces was not able to generate C++ code for our FOM extensions at that time.

As a bonus backwards compatibility with DIS has been maintained.

A complete example of the message definition of the CreateEntityCommand is shown in
listing 6.1. The message definition starts with the keyword message followed by the name of

the message. Attributes are defined by the combination of a keyword that defines whether the field

FFl-rapport 2013/01547 39

message CreateEntityCommand {

1

2 required string entityName = 1;
3 required WorldLocation location = 2;
4 required EntityType entityType = 3;
5 required ForceType forceType = 4;
6 optional double heading = 5;

7 }

8 message WorldLocation {

9 required double x = 1;

10 required double y = 2;

11 required double z = 3;

12 }

13 message EntityType {

14 required int32 kind = 1;

15 required int32 domain = 2;

16 required int32 country = 3;

17 required int32 category = 4;

18 required int32 subCategory = 5;
19 required int32 specific = 6;
20 required int32 extra = 7;
21 }
22 enum ForceType {
23 Other = 0;
24 Friendly = 1;
25 Opposing = 2;
26 Neutral = 3;
27 }

Listing 6.1 A complete example of the message definition of the CreateEntityCommand.

is required, optional or repeated (alist), a type and the name of the attribute. The

number at the end is a unique identifier of the attribute within the message.

The messages are strongly typed. Primitive types such as integers, doubles and strings are directly
supported by ProtoBuf. Enumerations and complex types can be defined as well as shown by the
ForceType and WorldLocation definitions. The complete message definition file is then
passed to a code generator that creates (de-)serialization code that can be compiled together with
your own application. ProtoBuf supports many programming languages. We used ProtoBuf for
both Java (MAS) and C++ (VR-Forces).

6.1.3 Simulation model improvements

The models and other improvements that were implemented in the Low-level BML plug-in are

described below.

40 FFl-rapport 2013/01547

6.1.3.1 BmlExerciseClock

The exercise clock in VR-Forces manages the progression of time in the simulation. Elapsed
simulation time is the amount of simulation time that has passed since the simulation started. The

clock advances every time its tick() function is called.

To enable VR-forces to use scaled real-time with constant time steps (constant simulated time
advance for every call to tick()) we developed a replacement for the standard exercise clock
DtExerciseClock. We modified the Fixed-Frame Best-Effort mode explained in
section 3.5.4 by dividing the sleep time with the factor given by the time slider in the VR-Forces
front-end. Thus the pace of the simulation is increased if the computer is able to run the simulation

faster.

It is preferable to have a constant time step to reduce the risk of having some of the simulation
models become unstable. The standard Variable-Frame Run-To-Complete mode

that VR-forces recommends for distributed interactive simulations has a tendency to break the
simulation if the CPU becomes saturated. This happens because the time advance becomes too
big. Until now it has been the only mode that supports scaled real-time without using HLA time

management.

To load the BmlExerciseClock acustom BmlSimManager class was created. The
DtSimManager class or derivatives thereof are responsible for instantiating all the classes
needed to run a VR-forces application. They also configure the application correctly in order to be

able to run a simulation.

6.1.3.2 Spot report generator

The standard DtSpotReportGenerator class is responsible for sending spot reports over
HLA to other VR-forces back-ends as well as for visualization in the front-end. The format of the
spot report is undocumented and is can only be directly accessed by other C++-based applications
through the VR-forces Remote Control API. To be able to access the information in the spot
reports from the MAS we created a subclass overriding the method sending the spot report to force
VR-forces to send out the information over Low-level BML. The BmlSpotReportGenerator
is loaded instead of the Dt Spot ReportGenerator for every entity with reporting capabilities.
The BmlSportReportGenerator has an interface to allow the MAS to turn on and off spot

reports for every entity through the Low-level BML plug-in Communications interface.

6.1.3.3 Periodic tick

When the Low-level BML plug-in is loaded, it instructs the VR-forces back-end to call a function
in the BmlPeriodicTick class every second of simulated time. The BmlPeriodicTick
class will then forward the current simulation time to the MAS. Time can only advance when a

scenario is loaded.

FFl-rapport 2013/01547 41

6.1.3.4 SimTaskManager

The MAS depends on receiving status updates for the tasks it has issued to the entities. The
DtSimTaskManager is responsible for managing the tasks of an entity. By creating a subclass,
BmlSimTaskManager, and overriding the functions that are responsible for handling the tasks
we are able to intercept the internal task notification messages and report back to the MAS whether
the task has been completed, aborted or is still being executed. The Bm1SimTaskManager
class also has an API for registering task notification requests from the Low-level BML plug-in

Communications interface.

6.1.3.5 FiredUponSensor

Every entity is equipped with a sensor which is implemented by the Dt FiredUponSensor to
notify the controller class that it is under fire. By creating a subclass, BnlFiredUponSensor,
and overriding the function that notifies the controller that the entity is under fire we are able to
send a fired upon message to the MAS.

6.2 Use and customization of models in VR-Forces

The customization of VR-Forces was kept to a minimum. We mainly used the models already
included in the framework, even though they were simpler than what we would have liked. The

few customizations and configurations that we did is explained next.

6.2.1 Entity models

VR-Forces provides a standard simulation model set, which contains a set of standard entity mod-
els. In addition to the standard entities in VR-Forces, we have added models for the Norwegian
unit types CV90 and Leo2, which have been used in previous projects. As we recall from section
3.5.1, entity models consist of sensors, controllers and actuators. Except from the 3D models

of the entities, the Norwegian CV90 and Leo?2 are constructed by suitable combinations of the
standard entity components in VR-Forces. The entities are equipped with the standard visual

sensor, and with weapon systems selected from the standard components.

The visual sensor models an entity’s ability to observe its surroundings, and it has a set of prop-
erties, including its range for detection and its position on the entity. The entities we used in our
experiment are listed in table 6.2, and all of these were equipped with only a visual sensor. The

standard range of the visual sensor is 4000 m, and since forest is not accounted for, this distance

may be considered too long in the area in our experiment.

A weapon system typically consists of controllers and actuators, and a set of connections de-
scribing how the controllers and actuators are linked. The weapon systems attached to an entity
depends on the number and types of weapons the entity is equipped with. Each weapon system
describes the properties of the weapon, like range, penetration abilities and the amount of damage

it causes. The attach point of the weapon on the entity is also set, to calculate the trajectories when

42 FFl-rapport 2013/01547

Entity Weapon System

Blue Forces CV90 30 mm gun
Leo2 120 mm gun and M2 machine gun

Red Forces T-72 125 mm gun
BTR-80 M2 machine gun
MT-LB M2 machine gun

Table 6.2 The weapon systems used by the entities in our experiment.

10.0000m I I 100.0000m I I

(a) Standard line formation. (b) Standard column formation.

Figure 6.4 Two of the standard formations in VR-Forces.

the weapon is fired. The types of weapons used by the entities in our experiment are shown in
table 6.2. These weapons are standard in VR-Forces, and each weapon has parameters that can
be varied. For example the limits for elevation range, the hit probability, and the load time can be

adjusted.

It is possible in VR-Forces to set the parameters more accurately for each entity. This requires

knowledge of better parameter values, which may be classified information.

6.2.2 Formations

Two of the standard VR-Forces formations are shown in Figure 6.4. Our custom formations are
shown in Figure 6.5. We use the standard line formation in figure 6.4a, but have customized

the column formation as shown in Figure 6.5a, since this formation is more suitable for narrow
Norwegian terrains and for movement on roads. In the line formation the distance between

the entities is 50 m, and the width of the platoon is therefore 150 m. In the customized column
formation the distances between the entities is set to 50 m, and the length of the platoon in this
formation is 150 m. In addition we have added the formation two columns shown in Figure 6.5b.
The width of this formation is 30 m and the length is 100 m.

A curiosity in VR-Forces is that if a platoon is tasked to move into formation in a specific position,
the centre of the formation will be placed in this position, while when a platoon is tasked to
follow a route using a given formation, it will first position itself such that the first entity (or the

FFl-rapport 2013/01547 43

()

©.0

50.0000m I I 100.0000m I I

(a) Custom column formation. (b) Two columns formation.

Figure 6.5 Our custom formations.

midpoint of the front entities) is positioned at the starting point. The formation centres are marked
as @ in Figures 6.4 and 6.5. Therefore, when a platoon first is tasked to move into formation

at the start point of a route and thereafter to follow the route, the platoon will first move into
formation with the position at its centre, thereafter turn around and move back half the length of
its formation, before it turns around to move along the route. In order to avoid this, we corrected
the positions that were used for move into formation tasks by moving them back half the length of
the formation. The length of the line formation is 0, so for this formation the positions were not

moved.

The modelling of movement in formation is simple in VR-Forces. One entity is the leader of a
formation, and the other entities will wait for the leader if it moves slowly, but if the leader moves
too fast for the other entities to follow, the leader will not wait for the rest of the platoon. This

is for example obvious if the leader is to the left in a line formation and the platoon takes a left
turn. Then the leader has the shortest route to follow, and it leaves the remaining entities behind.
This can partly be avoided by positioning the leading entity in the middle, but to ensure smooth

movement, we need to implement a better algorithm.

6.2.3 B-HAVE

We chose not to use the B-HAVE plug-in. There were several reasons for this. First of all the path
finding in B-HAVE does only compute the shortest path in the terrain, regardless of soil types
and slope, which are important aspects of path finding in rural terrain. Therefore B-HAVE did
not provide significant terrain analysis to the simulation, compared to the alternative, which was
that VR-Forces let the entities follow the straight lines between specified locations. We also had
some issues with B-HAVE, for example that there was a bug which made the entities gradually
move to the right while moving forward. This bug occasionally caused the entities to move into
the lake and get stuck. The bug was fixed in version 4.0.4i, which was released shortly before our
demonstration. Because of the short time to the demonstration, and the fact that we had problems
with VR-Forces crashing when using the new version of B-HAVE, we decided not to include

B-HAVE in this version of the simulation system, but to consider it for later versions.

44 FFl-rapport 2013/01547

7 Experiment

The scenario we used to test our simulation system was an offensive military operation in an area
near Alta. This scenario and a CxBR model suitable for the operation are described in detail in
[42]. In this section we explain how this model is realized in the multi-agent framework, and the
choices and adjustments we made in this process.

7.1 CxBR behaviour model

In [42] we described how to decompose an order through an hierarchy of agents, and we defined
the major and minor contexts for battle command agents at company and platoon level. We also
proposed a method for how the agents can plan their tasks, and defined how they should react to

unplanned events.

We used the example scenario to limit the number of mission contexts and major contexts and
transition rules. The content of these were all independent of the scenario, but only elements
needed for simulating the example scenario had to be modelled and implemented. Detailed
descriptions of the contexts will not be repeated here, but we will explain how we implemented the
simplifications we had to make due to the lack of automated terrain analysis. This includes both

planning of ordered task and reactive behaviour.

Table 7.1 lists all the missions and contexts we defined based on the example scenario. Both
mission and major contexts were modelled independent of agent type (platoon or company), but
not all of them are used for both platoons and companies. The table reflects which missions and

contexts are used for which agents in the example scenario.

Figure 7.1 illustrates the full context map, with all possible transitions. The context map is valid

for both platoon and company agents independent of mission context.

Some of the transition rules in figure 7.1 required further specifications during the implementation.
For example, when is an enemy small enough to engage? How close to the enemy should the
agent be before it transits to the Attack context? The parameter values used in the experiment are

summarized in table 7.2.

7.2 Scenario in VR-Forces

Because of the lack of terrain analysis in path planning and identification of suitable strategic
positions, we needed to provide accurate routes and positions to VR-Forces. These routes and
positions were created in the C2IS and sent to VR-Forces, but in order to ensure that they were
suitable for the scenario, we had first tested alternative routes and locations in VR-Forces before

inserting the best routes and positions into the C2IS.

FFl-rapport 2013/01547 45

Used by Used by Used by

Name Company Agents Platoon Agents CGF Agent
Missions Reconnoitre yes no no
Contexts Seize yes no no
Support by Fire yes no no
Observe no yes no
Move no yes yes
Attack no yes yes
Wait no yes yes
Major Reconnoitre yes no
Contexts Support by Fire yes no
Move yes yes
Move Cautiously yes no CGF agents do
Attack yes yes not have contexts
Hasty Attack yes yes
Observe yes yes
Regroup yes yes

Table 7.1 Mission and major contexts used to model the example scenario.

Reconnoitre
Support by Fire

Move

Cautiously Attack

Observe Threat level high
Threat level low

Receive message of enemy
within threat distance or fired upon

Superior
must handle € Enemy Regroup Enemy small
enemy too large enough to attack

Enemy too large
and out of sight

Receive message of enemy

within threat distance or fired upon

Wait Context completed
and plan empty

(default context)

Figure 7.1 The context map includes all company and platoon major contexts and is applicable

for all company and platoon mission contexts.

46 FFl-rapport 2013/01547

Parameter

Value

Planning

Transition Rules

Force Values

Distance from enemy to start

Attack in mission Seize

Enemy small enough to engage
Enemy too large to engage
Threat distance

Force CV90
Force Leo
Force T-72
Force BTR-80
Force MT-LLB

Force Platoon/Company agent

700 m

Enemy force < Own force
Enemy not small enough to engage
700 m

50
100
90
30
20

Sum force subordinates

Table 7.2 Specifications of values used in the realization of the CxBR model.

Category Classifications
Road Dirt road, Asphalt
Water Ocean, Shallow stream

Other areal features Forest, Grass, Swamp, Building

Table 7.3 The terrain types present in the terrain used in the experiment.

7.2.1 The terrain in the scenario

The scenario takes place in an area near Alta. The synthetic terrain of this area used in the ex-
periment has a resolution of 10 m and is created from a DEM 10 file provided by Kartverket.
The vector data, which contain the specifications of the terrain types, are based on culture data
with a resolution of 1:50 000. These vector data include roads, areal features and buildings. The

VR-Forces terrain types that are used in the terrain model are shown in table 7.3.

The terrain type Shallow stream was chosen for the lakes and ponds, since it, as the only water
alternative, has default values that makes it uncrossable. This was particularly important since we
planned to use B-HAVE for path finding, and in order to avoid B-HAVE to plan routes crossing
the water features, they needed to be uncrossable. We could also have modified the parameters
for other water alternatives, but chose to use the one with suitable standard properties. The other
terrain types were more obvious choices, there were not several suitable possibilities, for example

not several types of forest.

FFl-rapport 2013/01547 47

7.2.2 Testing of routes and positions

We constructed a simple version of the scenario in VR-Forces, including the routes and the
formations of the platoons, their rules of engagement and an attack of an enemy. The attack was
in this test scenario performed according to the VR-Forces model of attack, which means to
shoot at the enemy as soon as the enemy is observed and within weapon range. This scenario was
used to create routes where the entities could not be attacked, and to plan how to move during
the final attack of the enemy in order to exploit the cover possibilities of the terrain and attack
the enemy from several angles simultaneously. The test scenario also helped us find routes that
were of suitable lengths in order to avoid that one platoon had to wait for a long period of time
while the other platoons reached specific positions. Trained military officers would have identified
suitable routes faster than we did, but for untrained planners like us, small test simulations were
particularly useful. The main plan for the operation was created with the help from Subject Matter

Experts (SMEs), but the details of routes and locations were decided by us.

One of the reasons that we needed to test and plan the routes thoroughly, was that the models in
VR-Forces do not consider reduced sight through forest. Since there is a significant amount of
forest in the area of the operation, we needed to compensate for the lack of reduced sight through

forest by instead placing the routes such that they were covered by terrain formations.

7.2.3 Red forces and their behaviour

With the help from SMEs, we chose the red forces shown in 7.2 for our experiment. These forces
represent a vanguard for a main red force positioned further to the north east, and their task is to
observe approaching blue forces and to slow them down such that the main red force can prepare
their defence. The red forces are therefore rather weak compared to the blue forces, which are
planning to attack the main red force, with support from an additional company, after attacking the

vanguard.

The choice of entity types is based on the set of entity models included in VR-Forces. The red
forces consist of three BTR-80, two T-72 and three MT-LB. The BTR-80 entities are positioned
to overview the road and the surrounding area, searching for blue entities approaching from the
south-east. The two T-72 are the main attack units of the vanguard and are positioned further back,
ready to attack blue forces when they approach. The three MT-LB can be a small backup for the
other entities, since they are hidden, the approaching blue forces may not observe them right away.
They may also move along Route 1 around the lake in figure 7.2 in order to reconnoitre and search
for approaching forces, or to move behind approaching blue forces. In our experiment we let the

MT-LB move along the route searching for approaching enemies.

Since the red forces form a vanguard, they are not meant to stay and fight till the end, but to retreat
after fulfilling their task of detecting and slowing down the approaching blue forces. They are
therefore tasked to retreat along Route 2, which exits figure 7.2 in the upper right corner, moving

towards the main red force.

48 FFl-rapport 2013/01547

Figure 7.2 The red forces in our experiment.

8 Results

At November 14th 2012 we invited military experts from all branches of the military to a seminar
where we demonstrated our simulation system. In this section we summarize the feedback from
the participants.

8.1 Possible applications and desired functionality

It was a general consensus that a simulation system able to simulate an operational order would be
useful, both for training and planning purposes. The discussions revealed possibilities that we had
not thought about. For example, the system can be used to detect elements and factors that a plan
depends on. This can for example be estimated use of fuel and ammunition, or if a helicopter is
necessary for the plan to succeed, the plan will fail when fog or other weather conditions prevent
the helicopter to take off. Elements that are necessary for a plan to succeed are important to detect,
and, if possible, to avoid. If the necessary elements are missing, the plan needs to be changed.

For the simulation system to be useful there are however several factors that must be fulfilled.
First, it must be straight forward to use and understand, and it should not be time consuming to
perform a simulation. Second, the behaviour of the simulated entities must either be very realistic
or the simulation must be only a simple visualization of the plan in time and space. Both these
extremities might be useful, but everything in between would be useless.

FFl-rapport 2013/01547 49

During the demonstration we explained the simplifications we had had to make due to the lack of
automatic terrain analysis. For example we had to draw routes in the C2IS. Based on the feedback,
it should be possible to use the system to compare alternative routes, for example on different
sides of a lake, during the planning of an operation. It should therefore be possible for an officer
to provide guidelines for a route in the C2IS, such that these guidelines are followed during path
planning in the simulation system. If no guidelines are provided, the path planning should be

based on terrain information alone.

As for the behaviour of the red forces, they should always follow doctrine. In war the enemy
forces may come up with surprising tactics and unexpected solutions, but when simulating the plan
one will want the red forces to behave according to standard doctrine. The simulations should be
used to prepare for standard enemy behaviours. A simulated enemy can never cover all possible

human solutions, and it should stick to doctrine instead of attempting to be smart.

8.2 Comments on the current behaviour

In addition to comments about desired functionality, we got some comments on the behaviour of

the simulated entities.

In the simulation of the offensive operation, a company task is not started before the previous is
completed. This is due to the synchronization matrix we used, which stated that the tasks should
begin when the previous tasks were finished. It was commented that normally a company starts
its task before the previous company is completely finished. This can be done for example by
introducing report lines. When a company crosses the report line, it sends a radio message which
triggers the next company to start its task. It is also possible to let each task be scheduled to start at

a specific time.

Our agents were tasked to continue attacking the enemy until all entities were destroyed. Military
personnel commented that it is normally not necessary to destroy all enemies in order to defeat the
enemy. The structure of the enemy forces needs to be sufficiently reduced, and the speed of the
forward movement as opposed to the need to destroy small enemy entities needs to be considered.
In our simulation system we need to determine limits for the number of entities that can be left
when the friendly forces continue their plan, depending on the strength of the friendly forces and

their need to proceed forward quickly.

9 Conclusions and future work

In this report we have described a demonstrator of a simulation system which can autonomously
simulate an order from a C2IS. The focus so far has been on making the systems work together
and implement a multi-agent framework based on CxBR. The MAS includes enough behaviour
to demonstrate the concept and to reveal new challenges and research questions. In section 9.1
we have gathered considerations that need to be discussed further, and in section 9.2 we discuss

changes and extenuation we intend to make.

50 FFl-rapport 2013/01547

9.1 Topics for discussion

Many decisions regarding how the simulation system should work, capabilities, limitations,
stochastic versus deterministic, etc. depends on what the simulation system should be used for.
We should compare with GESI and VBS?2 that are used of specific types of simulations in order
to determine which properties we want for our simulation system, and which functions we do
not need or want. We need a sufficiently good simulation, but we need to determine the limit for

sufficiently good and the requirements for the simulation.

A simulation can simulate aggregated units, vehicles and/or single soldiers. At the moment VR-
Forces receives tasks at platoon level and tasks single vehicles according to the behaviour models
in VR-Forces. The vehicles are visualized in VR-Forces, while the aggregated units are visualized
in the C2IS. Whether we want to keep this level of simulation, simulate single soldiers, or only
simulate aggregated units can be discussed further. The choice will depend on the use of the
simulation system. For planning purposes a simulation of aggregated units is probably sufficient,
while for simulated exercises where soldiers are trained by controlling entities in a synthetic

environment, vehicles, and maybe also single soldiers, should probably be represented.

The visualization of the simulation should be discussed further, not only which level of entities
that should be represented, but also the appearance of the visualization itself, regarding maps, sym-
bols, effects, and information. The visualization should make the simulation easy to understand, be

visually appealing, and include useful and necessary information.

The requirements for the quality of the simulated behaviour need to be determined. Whether the
simulation system only shall follow detailed provided orders or include more intelligent behaviour,
place different requirements on the artificial intelligence required in the simulation system.

There are several possibilities for what types of maps that should be used in the simulations. The
maps can be streamed, for example from military sources, and the simulation may be performed
on top of the chosen map. This would give a simple, but interesting visualization, with the

flexibility that the type of map can be chosen. The maps can also be stored locally.

The simulation system can be extended to include logistics, for example use of ammunition
and fuel, and how and where new resources should be received. There are also other possible
extensions of the simulation system, and it can be discussed further which extensions we want and

which that are out of the scope of our simulation system.

9.2 Future work

There is some desired functionality that is not yet provided. Most importantly, automatic terrain
analysis is missing in the current version. We are working on improving the terrain analysis in
B-HAVE. A preliminary study can be found in [43]. Weather conditions and their implications are

also interesting to include in future versions.

As for the multi-agent system we need more cooperation and communication between the entities.

FFl-rapport 2013/01547 51

For example when one platoon performs a hasty attack on a small enemy it encounters, it does
not report this to its superior. It is therefore a possibility that several platoons initiate a hasty
attack on the same enemy. Instead the platoon should report the initiation of a hasty attack to its
superior, such that when the second platoon reports initiation of a hasty attack, the company tasks
the platoon to instead proceed with plan. It is also reasonable that the superior agents always keep
track on what their subordinate agents are doing.

Another desired extension of the multi-agent framework is the ability to re-plan. In the current
version of the MAS, the agents make a plan for the task when they receive it based on the situation
in that moment. The agent will react to changes in the environment, like an unexpected enemy, but
will not notice if the initial plan is no longer valid, or whether it would have planned differently

with the updated picture of the situation.

In addition to the ability to do re-planning, the planning procedure itself must be improved. In
section 7.1 we explained how a plan is made for the mission context Seize. The basic plan lacked

considerations like potential enemies that had been observed outside objective areas.

To make the simulation system useful, we do not only need more complex basic plans for the
mission contexts which are currently available, but we will need support for more tasks. Also,
the simulation system needs a GUI where the user can monitor the commands, reports, mission
contexts, major contexts etc., and possibly interfere with the simulation when there is a need to
adjust the entities’ behaviour. Such a user interface will make it easier to understand the decision

making done by the agents, and should produce a log for later analysis.

52 FFl-rapport 2013/01547

References

[1] S. Carey et al., “Standardizing battle management language - a vital move towards the army
transformation,” in Proceedings of the 2001 Fall Simulation Interoperability Workshop, no.
01F-SIW-067, 2001.

[2] R. Bronkers et al., “Battle management language capable computer generated forces,” in

Proceedings of European Simulation Interoperability Workshop, 2011.

[3] A. Alstad et al., “Low-level battle management language,” in Proceedings of the 2013 Spring
Simulation Interoperability Workshop, no. 13S-SIW-032, 2013.

[4] A.J. Gonzalez, B. S. Stensrud, and G. Barret, “Formalizing context-based reasoning: A
modeling paradigm for representing tactical human behavior,” International Journal of
Intelligent Systems, vol. 23, pp. 822-847, 2008.

[5] A. Gallagher, A. J. Gonzalez, and R. DeMara, “Modeling platform behaviors under degraded
states using context-based reasoning,” in Proceedings of the 2000 Interservice/Industry
Training, Simulation and Education Conference (I/ITSEC-2000), 2000.

[6] A.J.Gonzalez and R. Ahlers, “Context-based representation of intelligent behavior in
training simulations,” Transactions of the Society for Computer Simulation International,
vol. 15, no. 4, pp. 153-166, 1998.

[7] SISO, Standard for: Coalition Battle Management Language (C-BML), 2012, SISO-STD-
011-20128-DRAFT.

[8] S. Levine et al., “Joint battle management language (JBML) - phase 1 development and
demonstration results,” in Proceedings of the 2007 Fall Simulation Interoperability Work-
shop, no. 07F-SIW-051, 2013.

[9] A. Alstad, “Norwegian Nato MSG-048 technical documentation,” Forsvarets forskningsinsti-
tutt, FFI-notat 2010/01261, 2010.

[10] SISO. Military scenario definition language (MSDL). [Online]. Available: http://www.sisostds.
org/StandardsActivities/DevelopmentGroups/MSDLMilitaryScenarioDefinitionLanguage.
aspx

[11] J. M. Pullen et al., “MSDL and C-BML working together for NATO MSG-085,” in IEEE 2012
Spring Simulation Interoperability Workshop, 2012.

[12] NATO NSA, STANAG 4603 - Modelling and Simulating Architecture Standards for Technical
Interoperability: High Level Architecture (HLA), 2008.

[13] SISO, Realtime-Platoform Reference Federation Object Model (RPR FOM 2.0d17), 2003.

FFl-rapport 2013/01547 53

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
(23]
[24]
[25]
[26]

[27]

(28]

[29]

M. N. Nielsen and O. M. Staal, “Evaluering av high level architecture kjgretidsinfrastruktur
for bruk ved FFL,” Forsvarets forskningsinstitutt, FFI/NOTAT-2006/03774, 2006, (Unntatt
Offentlighet).

IEEE, Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)— Object
Model Template (OMT) Specification, August 2010, IEEE Std 1516. 2-2010 (Revision of IEEE
Std 1516. 2-2000).

IEEE, Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)— Federate
Interface Specification, August 2010, IEEE Std 1516. 2-2010 (Revision of IEEE Std 1516.
2-2000).

IEEE, Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)—
Framework and Rules, August 2010, IEEE Std 1516. 2-2010 (Revision of IEEE Std 1516.
2-2000).

IEEE, Standard for Distributed Interactive Simulation - Application Protocols, 2012, IEEE Std
1278.1-2012 (Revision of IEEE Std 1278.1-1995).

M. Wooldridge, An Introduction to MultiAgent Systems. John Wiley & Sons Inc., 2002.

VT MAK VR-Forces. [Online]. Available: www.mak.com/products/simulate/

computer-generated-forces.html

A Hjulstad, “Simuleringsrammeverk for datagenererte styrker - erfaringer med og tilpasninger
i et COTS-produkt: VR-Forces,” Forsvarets forskningsinstitutt, FFI/NOTAT-2005/01788, 2005,
(Unntatt Offentlighet).

VT MAK Technologies, VR-Forces Developers Guide.

VT MAK Technologies, VR-Forces Configuration Guide.

R. Lerusalimschy, Programming in Lua. lua.org, 2013.

VT MAK Technologies, B-HAVE Users Guide.

Autodesk Kynapse. [Online]. Available: www.gameware.autodesk.com/kynapse

Multilateral Interoperability Programme (MIP), STANAG 5525 Joint Consultation Command
and Control Information Exchange Data Model (JC3IEDM), 2012.

M. J. Pullen et al., “Adding reports to coalition battle management language for NATO
MSG-048,” in Joint SISO/SCS European Multi-conference, 2009.

M. J. Pullen et al., “Integrating national c¢2 and simulation systems for bml experimentation,” in

Proceedings of European Simulation Interoperability Workshop 2010, 2010.

54 FFl-rapport 2013/01547

[30] M. Pullen et al., “Integrating national C2 and simulation systems for BML experimentation,” in
Proceedings of the 2010 European Simulation Interoperability Workshop, no. 10E-SIW-008,
2010.

[31] M. Pullen et al., “An expanded C2-simulation experimental environment based on bml,” in
Proceedings of the 2010 Spring Simulation Interoperability Workshop, no. 10S-SIW-049, 2010.

[32] Google Protocol Buffers. [Online]. Available: https://developers.google.com/protocol-buffers/

[33] R. M. Fujimoto, “Time management in the high level architecture,” Simulation, vol. 71, pp.
388-400, 1998.

[34] A. Alstad, “HlaLib v3.0 - user guide,” Forsvarets forskningsinstitutt, FFI/NOTAT-2010/0871,
2010.

[35] J. Gemrot et al., “Pogamut 3 can assist developers in building ai (not only) for their videogame
agents,” in Agents for Games and Simulations, ser. Lecture Notes in Computer Science,
F. Dignum et al., Eds. Springer Berlin Heidelberg, 2009, vol. 5920, pp. 1-15. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-11198-3_1

[36] A. Pokahr, L. Braubach, and W. Lamersdorf, “Jadex: a BDI reasoning engine,” in Multi-Agent
Programming - Languages, Platforms and Applications, ser. Multiagent Systems, Artificial

Societies, and Simulated Organizations. Springer, 2005, vol. 15, ch. 6, pp. 149-174.

[37] G. C. Barrett and A. J. Gonzalez, “Effective agent collaboration through improved
communication by means of contextual reasoning,” International Journal of Intelligent Systems,
vol. 26, no. 2, pp. 129-154, 2010.

[38] Drools - the business logic integration platform. JBoss. [Online]. Available:

www.jboss.org/drools/

[39] Websphere ilog jrules brms. IBM. [Online]. Available: www-01.ibm.com/software/integration/

business-rule-management/jrules-family/
[40] Jess, the rule engine for the java platform. [Online]. Available: www.jessrules.com
[41] Clips: A tool for building expert systems. [Online]. Available: clipsrules.sourceforge.net

[42] R. A. Lgvlid et al., “Modelling battle command with context-based reasoning,” Forsvarets
forskningsinstitutt, FFI-rapport 2013/00861, 2013.

[43] S. Bruvoll, “Preliminary study of terrain analysis and path planning for computer generated
forces,” Forsvarets forskningsinstitutt, FFI-notat 2013/00688, 2013.

FFl-rapport 2013/01547 55

Abbreviations

ANNCP Anglo-Netherlands-Norwegian Cooperation Program
C2IS Command and Control Information System
C-BML Coalition Battle Management Language

CBMS Coalition Battle Management Service

CGF Computer Generated Forces

COTS Commercial Of-The-Shelf

CxBR Context-Based Reasoning

DIS Distributed Interactive Simulation

GMU George Mason University

GUI Graphical User Interface

HLA High Level Architecture

IEEE Institute of Electrical and Electronics Engineers
I/ITSEC Interservice/Industry Training, Simulation and Education Conference
IMS Java Message Service

KDS Kongsberg Defence Systems

LOCON LOwer COntrol operators

LVC Live-Virtual-Constructive

MAS Multi-Agent System

MOM Message Oriented Middleware

MSG Modelling and Simulation Group (in NATO)
MSDL Military Scenario Definition Language

OA Objective Area

OMT Object Model Template

OPORD Operational Order

ORBAT Order of Battle

ROE Rules of Engagement

SBML Scripted Battle Management Language

SISO Simulation Interoperability Standards Organization
SME Subject Matter Expert

VMASC Virginia Modeling, Analysis and Simulation Center
VR-Forces Virtual Reality Forces

XML eXtensible Markup Language (XML)

56 FFl-rapport 2013/01547

	Blank Page

