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English summary 

The Stuhmiller model for blast wave injury  has been studied. Although it has not been 

documented well in literature, we were able to program the model in Matlab and study some of its 

properties.  It turned out that the Stuhmiller and Axelsson models had been calibrated to more or 

less the same data.  As a result it was possible to derive a relationship between their respective 

injury parameters.  

 

Further, it was noted that two new injury models could easily be derived, using either the 

calculated chest wall velocity from Stuhmiller or calculating the irreversible work using the 

Axelsson chest wall velocities.  In particular the Modified Stuhmiller model gave better 

agreement than any other model when applied to the Johnson data.  

 

Finally, all four injury models were compared with the Bowen curves. Here the original Axelsson 

model and the Modified Stuhmiller model were in best agreement, which could indicate that chest 

wall velocity is a better injury parameter than the irreversible work.  
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Sammendrag 

Stuhmiller-modellen for skade på mennesker fra sjokkbølger er blitt undersøkt. Selv om den ikke 

er spesielt godt dokumentert i litteraturen, klarte vi å programmere modellen i Matlab og studere 

en del av dens egenskaper. Det viste seg at Stuhmiller og Axelsson modellene hadde blitt 

kalibrert til omtrent samme data. Dermed var det mulig å utlede en sammenheng mellom 

skadeparameterene deres.  

 

Videre så vi at to nye skademodeller enkelt kunne utledes, enten ved å bruke den beregnede 

brystvegghastigheten fra Stuhmiller-modellen eller ved å beregne irreversibelt arbeid ved bruke 

av brystvegghastighetene fra Axelsson-modellen. Spesielt den modifiserte Stuhmiller-modellen 

viste seg å være bedre i overensstemmelse med kalibreringsdataene enn noen annen modell.  

 

Til slutt ble alle fire skademodellen sammenlignet med Bowenkurvene. Her viste den originale 

Axelsson-modellen og den modifiserte Stuhmiller-modellen seg å være i best overensstemmelse, 

noe som muligens kan indikere at brystvegghastighet er en bedre skadeparameter enn irreversibelt 

arbeid. 
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1 Introduction 

In (1) a review of models for predicting blast wave injury to humans was performed. The study in 

particular looked at the Axelsson model (2) and the Bowen (3) and Bass (4) injury curves.  

Basically, the conclusion was that the Axelsson BTD
1
 model (and consequently the derived SP

2
 

models) seemed to give good predictions. 

 

However, the blast injury model developed by Stuhmiller et al. (5) was not studied in the previous 

work. This was due to the model not being public and therefore difficult to analyse.  After 

publication of (1), some further information about the Stuhmiller model has been obtained, 

allowing us to examine it in more detail and compare with the other injury models.  The results 

from this study are described in this report.  It is assumed that the reader is already familiar with 

the material in (1), so no detailed explanation about the Axelsson model, Weathervane model, 

Bowen curves, BTD vs SP etc. will be given here. 

2 Stuhmiller injury model 

The original Stuhmiller BTD model (5) was published in 1996. This model has several properties 

in common with the Axelsson BTD model: 

 

 It is a Single Degree of Freedom (SDOF) model describing the motion of the chest wall. 

 The model requires pressure history data from four gauges on a BTD as input data and 

uses this input to calculate four chest wall velocities.   

 The four chest wall equations are independent.  

 The calculated chest wall velocities as a function of time are used to construct an injury 

criterion.   

 

However, the Stuhmiller model differs from the Axelsson model in two ways: 

 

 The differential equations used to calculate the chest wall velocities are different. 

 Instead of Axelsson’s maximum chest wall velocity, a different injury criterion based on 

the irreversible work performed on straining the lung tissue through chest wall motion is 

used. 

 

Let us look a little more in detail at the Stuhmiller model. 

  

                                                           
1
 Blast Test Device 

2
 Single Point 
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2.1 Original Stuhmiller model 

In (5) the Stuhmiller equation for the chest wall velocities is given by: 

 
2

1 0
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0

1
( ) 1 ( 1)
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where L=V/A is the ratio of lung volume to chest wall area and 0
0

0

p
c 


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After having solved the Stuhmiller equations with the relevant BTD pressure history input, four 

quantities *
iW called normalized work can be computed as follows: 
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Finally, the total normalized work *W can be calculated: 

 
4

* *

1

i

i

W W




       (2.3)

 

 

If BTD pressure data is not available, but only side-on pressure from a single sensor is, Stuhmiller 

suggested a method similar to the Weathervane model (6), described in Figure 2 of his paper, to 

estimate the pressure histories. 

 

Stuhmiller suggested that the total normalized work *W was correlated with the degree of human 

injury.  To find the exact correlation, the Stuhmiller model was calibrated against injury data.  

Unfortunately, the original Stuhmiller paper is not very explicit about where this calibration data 

comes from.  The only information given is a claim that it is based on experiments against sheep 

on “the Albuquerque test site”. Apparently, more than 1000 animal tests were recorded in their 

database from a variety of tests, including “free field exposure to explosions in rooms and 

vehicles and simulations of weapon fire”.  However, sadly, no exact references to these test data 

are given, although  Figure 4 in the paper indicates that the free field studies are from 1981-1991 

and the complex wave studies from 1990-1991.  

 

Stuhmiller also created curves for probability of injury as a function of normalized work (see 

Figure 3 in his paper).  However, no underlying theory or mathematical formulas were presented, 

except it was mentioned that for large animals, W
*
=2.08 apparently corresponds to 50% lethality. 
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2.2 Trouble with the original Stuhmiller model 

On trying to actually use the original Stuhmiller model, one immediately runs into serious 

problems. In the original paper it is claimed that linearization of Equation (2.1) for small 

displacements and velocities will give: 

 

0 0( )
dv x

m p t c v p
dt L

  
      (2.4)

 

 

But, an inspection of these equations shows that this is not correct.  Instead, the linearization 

should be: 

 

0
0

( ) 2
dv v x

m p t p
dt c L


 

    
       (2.5)

 

 

This cast some doubt about how to implement the model.  It was not possible to figure out if the 

linearization of Equation (2.4) was wrong and Equation (2.1) was right, whether Equation (2.4) 

was correct and there was an error in Equation (2.1), or, if both equations were wrong. Stuhmiller 

was contacted about this (7) and responded that there was indeed an error in the paper, but, in any 

case, the whole model had “evolved significantly” since publication. Unfortunately, the new 

model was not public.  However, it was implemented in the INJURY computer program. 

2.3 Stuhmiller calibration data 

In an article (8) in 1997, Stuhmiller appeared to shed some light on the experimental data used for 

calibration of the original model.  While not explicitly talking about his injury model, Stuhmiller 

wrote that “Over the past 15 years, tests have been conducted at the Albuquerque Overpressure 

Test Site [...] exposing animals to blast loading (Richmond et. al. 1982, Dodd et. al. 1985, 

Yelverton et. al 1993a,b).  Configurations included explosives detonated in the open and in 

enclosures and simulations of weapons fired from enclosures”.  The phrasing of the sentence is 

very similar to the description of the calibration experiments in the original Stuhmiller paper, 

leading us to believe that the three given references are probably the experiments used for 

calibrating the model.  

 

Closer inspection reveals the 1993 Yelverton reference
3
 to be the experimental data against which 

also the Axelsson injury model was calibrated (9).  However, in addition the Stuhmiller model 

                                                           
3
 Strangely, the 1993 references mentioned by Stuhmiller are wrongly attributed to Yelverton. The actual 

lead author for these reports is Johnson, with Yelverton being second author. (It must be the same report 

because the title and contract number are the same. Figure 1 in Stuhmiller’s 1997 paper also refers to 

Configuration A8, which is the same as described in the Johnson report.)  Interestingly, Axelsson also 

wrongly attributed this experimental report to Yelverton in the paper on his injury model.  It is possible that 

the order of the authors was changed at a late stage, though the Stuhmiller paper is written four years after 

the Johnson experimental report was published.   
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seems to be calibrated to data from Richmond (1982) and Dodd (1985).  Both these studies deal 

with exposure to repeated blast waves at relatively low amplitudes.  For cases of only one 

exposure, it therefore looks like the Stuhmiller and Axelsson models are calibrated to exactly the 

same data!  Thus, we should not be surprised if both these models turn out to give roughly similar 

results. 

3 ”Evolved” Stuhmiller model 

In a paper (10) published in 2012 some more information about the “evolved” Stuhmiller model 

is given.  It turns out that in the newest version of the Stuhmiller model, the original piston-model 

to calculate the chest wall velocity (whatever the correct equation actually was) had been 

abandoned and replaced with a modified Lobdell model.   

3.1 The modified Lobdell model and chest wall velocity 

The original Lobdell model (11) was not developed for human exposure to blast waves, but to 

assess the human thoracic response from blunt impact.  In this formulation, the resultant force 

acting on the chest wall was due to deceleration of an impacting object with mass m1.  

 

In the modified Lobdell model, adapted for blast wave exposure, the impacting mass m1 is 

obviously no longer needed. The chest wall (m2) and thorax (m3) are set in motion by the force 

from the impacting pressure wave, interacting with the chest wall and thorax through their 

effective surfaces Aeff and Ab respectively.  

 

The human chest wall is divided into three parts: anterior, left and right hand side. Let’s write 

these chest wall velocities as vA(t), vL(t) and vR(t).  

 

 

Figure 3.1 Modified Lobdell model used when calculating the chest wall velocity (CWV) 

 

First, it is assumed that the wall stiffness of the left and right sides is similar to that of the 

anterior; hence identical models could be used to calculate the chest wall velocity for the three 
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sides. Second, because of the stiff nature of spine with ribs and back muscles, the "chest wall" of 

the posterior thorax is assumed to have negligible effect on the compression. Hence the entire 

thorax is modelled using only three moving chest walls (see Figure 3.1).  

 

Their motion is, nevertheless coupled at the centre of mass of thorax (m3). However, due to the 

large inertia of m3 compared to m2, the calculations can be simplified or decoupled. This means 

that when calculating e.g. the chest wall velocity of right hand side we can neglect the chest wall 

motion on the left side. The pressure on the left hand side is thus assumed impinging directly on 

the thorax (m3).  

The chest wall velocity is defined as (for a while we skip the subscript indicating which of the 

tree sides we are looking at since the equations will be identical): 

 

)()()( 32 tytytv   , (3.1) 

 

and is found by solving the following equations of motion: 

 

   

   )()()()(...

...)()()()()()(

324223

32233223222

tydtyktytyk

tytyctytykAtPtym

effve

eff



 
 (3.2) 

 

     

   )()()()(...

...)()()()()()()(

324223

322332233233

tydtyktytyk

tytyctytykAtPAAtPtym

effve

beffb



 
 (3.3) 

 

   )()()()( 34234223 tytyctytyk veve
   (3.4) 

 

We have used the notation: 

 











dt

tdy

dt

d
ty

dt

d
ty i

ii

)(
)()(  ,  i  ε [ 2, 3, 4 ] (3.5) 

 

Now, y2, y3 and y4 are the displacements of the two masses and the intermediate point as seen in 

Figure 3.1. Aeff is the effective area of the chest wall, while Ab is the whole body (thorax) area. 

The  k’s and c’s are spring stiffness and damping coefficients. These parameters are given in 

Table 3.1 for a 50
th
 percentile male with mass 75 kg (average human mass).  

 

For subjects with a mass mt, which differs from the average human mass, the constants are scaled 

according to the rule given in the same table. R is the ratio of the two masses: 

 

h

t

m

m
R   (3.6) 
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Table 3.1 Constants used to calculate chest wall velocity, their nominal value (50th percentile 

human male with mass 75 kg), and the applicable scaling rules. 

Constant Description Nominal value Scaling rule 

m2 Mass of chest wall 0.45 kg x R 

m3 Mass of thorax (whole body) 27.20 kg x R
1/3

 

k23 Spring constant (chest wall to whole body) 26300 N/m x R
1/3

 

k23i Spring constant, 

effective at (y2-y3 = d) 

52600 N/m x R
1/3

 

kve23 Constant for spring in series with damper 13200 N/m x R
1/3

 

c23c Damping factor in compression, 

effective when  ̇   ̇    

520.0 N s/m x R
2/3

 

c23e Damping factor in expansion, 

effective when  ̇   ̇    

1230 N s/m x R
2/3

 

cve23 Constant for damper in series with spring 180 N s/m x R
2/3

 

d Distance chest must move to activate k23i 0.0381 m x R
1/3

 

Ab Total frontal blast area of thorax (whole body) 0.10597 m
2
 x R

2/3
 

Aeff Effective area of chest wall in motion 0.01750 m
2
 x R

2/3
 

 

For sheep, the average mass is 42 kg; hence the constants in Table 3.1 are scaled accordingly. 

 

 

 

 

 

 

The pressure traces used as input to calculate the chest wall velocities is measured by a blast test 

device (BTD). For each calculation one needs the two pressure traces, the one impacting the chest 

wall and its rear counterpart. P2(t) and P3(t) is the pressures acting on the m2 and m3 side of the 

modified Lobdell model respectively, as shown in Figure 3.2. The pressure on the m2 side 

interacts both with the movable chest wall with an effective area Aeff, and the thorax over the area 

P2(t) Aeff Ab 
P3(t) 

Figure 3.2 Figure showing the input pressure acting on the m2 side (the movable chest wall) 

and the m3 side (whole body or thorax side). 
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(Ab - Aeff). The pressure on the m3 side (“back side”) interacts with thorax only having the total 

area Ab.  

 

The outcome of the above calculations are the chest wall velocities for three moving chest walls: 

Anterior vA(t), left vL(t) and right vR(t). While Axelsson based his injury criterion on the average 

maximum chest wall velocities, Stuhmiller had a quite different approach.  

3.2 Normalized work 

Stuhmiller related the injury to a quantity called normalized irreversible work. The irreversible 

work performed on the lung (normalized by the lung volume and ambient pressure) is a function 

of the calculated chest wall velocities and is defined as follows:  
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




  (3.7) 

 

s ε [A, L or R] indicating the three sides anterior (A), left (L) and right (R). 

 

V0 is the initial lung volume, γ is the ratio of the specific heats, PA  is the ambient pressure and ρ is 

the lung bulk density. Values are given in Table 3.2.   

 

Table 3.2 Constants used in calculation of normalized work. 

Constant Description Value Scaling rule 

V0 Initial lung volume 0.00402 m
3
 x R 

γ Ratio of specific heats 1.4 - 

ρ Lung bulk density 100 kg/m
3
 - 

PA Ambient pressure (at standard conditions) 101.325 kPa - 

 

The sound speed c in lungs is given by (assuming adiabatic conditions): 

 



 aP
c   (3.8) 

 

The total effective work is then defined in the following way:  

 

  5.0222

rrllcceff WfWfWfW   (3.9) 

 

fc, fl and fr are fractional surface loading area for anterior, left and right chest wall of the subject. 

These coefficients are given in Table 3.3 and are different for sheep and human.  
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Thus, the Stuhmiller model is species dependent, meaning it will give different injury predictions 

for a (theoretical) sheep and human of the same mass. 

 

Table 3.3 Fractional surface loading area coefficients for sheep and human 

 fc fl fr 

Sheep  0.20 0.40 0.40 

Human 0.50 0.25 0.25 

3.3 Probability of injury 

To correlate the normalized work with injury, the same sheep data as for the original Stuhmiller 

model was used, possibly with some additional (non-lethal) data points.  

 

However, unlike in development of the Axelsson model, the ASII injury scale was not used in 

scoring the injury. Instead only the lung component of the ASII was used. More precisely, lung 

injury was graded based on the observed fractional surface area of contusion in four categories: 

 

 Trace:  (<1 %) 

 Slight (1-10 %) 

 Moderate (10-50 %) 

 Severe (> 50 %) 

 

Data were binned into groups "trace or greater", "slight or greater", "moderate or greater" and 

"severe". For each injury group the probabilistic outcome of injury occurrence, P, was fit to the 

data by the following equations: 

 

 
 L

L
levelP

exp1

exp
)(


 , (3.10) 

 

where 

 

   nsbWbbL eff lnln 210  . (3.11) 

 

Using  

 

1

2
b

b

efftot nsWW  , (3.12) 

 

equation (3.11) can be written: 

 

 totWbbL ln10   (3.13) 
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These equations could be slightly simplified by cancelling some of the exp(log) terms,  but we 

have chosen to keep the form given in the original paper (9) to avoid confusion. 

 

The constants b0, b1 are correlation coefficients and listed in Table 3., whereas ns is the number of 

exposures leading to a “total effective work” Wtot. The effect from multiple exposures was 

established using only the "moderate or greater" injury group, due to a small number of data 

points available for the others. It was further assumed that this rule was applicable to all injury 

data groups. So the b2 value is only given for "moderate or greater".  Hence, ns in equation (3.12) 

should be multiplied by the ratio b2/b1 from the “Moderate or greater” group, while b0 and b1 

parameters in equation (3.13) should be according to the injury group of interest. 

 

Only 15 lethalities were recorded out of 561 samples, using the data set exposed to complex blast 

waves. These were used to correlate the lethality as function of normalized work. The correlation 

coefficients are also given in 3.4. 

 

Table 3.4 Parameters defining L in equations (3.11)-(3.13). Reproduced from (10). 

 b0 b1 b2 

Trace or greater 11.8694 2.2167  

Slight or greater 9.4931 2.0937  

Moderate or greater 7.1169 1.9706 0.5990 

Severe 3.8187 1.7938  

Lethality 8.4547 3.3828  

 

Figure 3.3 shows the probability of injury for the various categories. The occurrence of an injury 

level is found by taking the difference of the appropriate incidence curves.  
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Figure 3.3 Probability of injury for the different categories with ns=1. 

4 Properties of the Stuhmiller model 

Now that all details of the Stuhmiller model are available to us, it can be interesting to study some 

of its properties, especially how it compares with the slightly similar Axelsson model.  

The latest version of Stuhmiller’s injury model is implemented in the computer program INJURY 

8.3, which FFI has been able to obtain. Further details about the code are given in Appendix C.  

However, based on the description in Chapter 3, we have also developed an in-house Matlab 

program (see Appendix C), which does basically the same thing as INJURY 8.3. 

  

To study the Stuhmiller model, INJURY 8.3 could be used as a “black box”. However, to achieve 

a proper understanding, the Matlab code is both much more convenient to run and also gives us 

full control and insight into the internal workings. The Matlab code was therefore used in our 

exploration of the Stuhmiller model. 

4.1 ASII vs lung injury 

As noted earlier, both the Axelsson and Stuhmiller model use pressure input from a BTD, but 

with a different differential equation and different injury criterion.  On the other hand, both are 

calibrated to more or less the same experimental data (as long as we are looking at non-repeated 

exposure), but in a slightly different way.  Let us look at this difference a little more closely. 
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In the Johnson experiments, sheep inside enclosures were exposed to blast waves.  For each test, 

the corresponding sheep injuries were documented very thoroughly.  Each sheep was studied and 

a numerical value was given for the degree of injury to each of the followings organs: 

 

 Lungs 

 Phalynx/Larynx 

 Trachea 

 GI Tract 

 Intra-abdominal 

 

The injury score for each organ was normalised so that the maximum score was 1.0.  In addition, 

points were given according to the extent of pneumothoriax, hemoperitoneum (internal bleeding), 

corony air or cerebral air. (In practice, it was only the internal bleeding that was sometimes 

different from zero).   

 

All these scores were then summed to obtain the Adjusted Severity of Injury Index (ASII).  

(There was also some minor correction for ear injury).  Johnson multiplied the ASII score by a 

factor of 2 if the sheep died, whereas Axelsson did not do this in his analysis. Here we follow the 

Axelsson convention. 

 

Axelsson used a curve fitting procedure to correlate the maximum chest wall velocity V from his 

injury model with the measured ASII-score. As explained in Chapter 3.3, Stuhmiller had a 

different approach and did not use the measured total ASII scores at all. Instead his injury 

parameter was correlated only with the lung injury component.  This can be justified from the 

assumption that lung injury is most likely to lead to lethality, and as we will see below correlates 

well with the injury parameter.  

 

So, Axelsson and Stuhmiller had different  approaches when dealing with the injury data. It is not 

clear how the final results are influenced by these two approaches. To gain some further insight, 

we study the relationship between each component score for an organ and the total ASII.  This 

information is readily available in the Johnson report (9) and is plotted in Figure 4.1.  
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Figure 4.1 Relationship between total ASII and each injury component in the Johnson 

experiments. (Red denotes a dead sheep). 

 

We see that in particular the lung component and the GI Tract component is closely correlated to 

the total ASII.  Especially between the lung component and the ASII without the internal bleeding 

component, the correlation is excellent.  The relatively good correlation seems to indicate that 
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lung injury is a good indicator of overall injury.  Thus, it should probably not make too much 

difference that Stuhmiller used only the lung component instead of the ASII. 

4.2 Difference between human and sheep  

We saw earlier that the Stuhmiller model is slightly different for human and sheep, see Equation 

(3.9).  This means that when exposed to the same blast wave, the injury or lethality for a human 

and sheep will be different. The Axelsson model does not have this property, where the only 

parameter describing the subject is the subject mass. 

  

It is not possible to see how big this “species effect” would be in a given situation just from 

looking at the Stuhmiller equations.  The natural way of gaining insight is to examine how the 

irreversible work W calculated from Equation (3.9) for sheep and human varies as a function of 

different BTD blast input data.  

 

In principle, we could feed random data in Equation (3.9) and see what happens (for sheep and 

human), but as a test, we have started with all scenarios in the Johnson experiments, where we 

already have numerical BTD data available.  All except one of these scenarios are in an enclosed 

container, with the subject exposed relatively close to a wall, so the blast field is relatively 

complex and should give us a good idea of how the human/sheep assumptions work out in a 

practical situation.   

 

We emphasize that the idea is not to compare lethality for a given human and sheep, but to 

investigate the influence of the two sets of fractional surface loading area parameters (fc, fl and fr) 

used to calculate the total normalized work.  Our aim is to get an impression on the importance of 

these different mathematical assumptions for sheep and human, i.e. whether the difference 

between calculated normalized work is minor or relatively large, whether it is relatively constant 

or varies a lot as a function of different input data.  Hence, in both cases, a mass of 70 kg was 

used for the subject (this is the “default” mass value both in the Axelsson and Bowen injury 

models).  

 

In Figure 4.2 we have plotted the ratio between W(man) and W(sheep) for all the experiments,  

assuming  right hand side facing the blast. Each number along the x-axis belongs to a given 

experimental configuration in the following order: A1, A2, A3, A4, A5, A6, A8,A8-2,A8-3,A8-

4,A8-5, A9, A9-2, A9-3, A10, A10-2, C1, C1-2, C1-4, D1, D1-2, D1-4, Free field (See the 

Johnson report (9) for details about the different experimental set-ups). 
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Figure 4.2 Comparison between irreversible work for human and sheep in the various Johnson 

scenarios.  

 

We see that in most cases, it is slightly more dangerous to be a (hypothetical) sheep than a human 

of same mass, but the difference is not very big, usually less than 20% normalized work.  

However, there are two exceptions (A8 and A9-2) in which a human would get more injury than a 

sheep, so the relationship is quite complex and it is not possible to find a simple rule to estimate 

the difference between sheep and human.  

 

The Stuhmiller model has tried to account for differences in anatonomy between sheep and 

human and therefore the results differ slightly from the Axelsson model, but clearly the difference 

is usually small. Obviously, since no experiments have been performed on humans, we have no 

way of saying whether the Axelsson assumption (no difference) or Stuhmiller assumption (some 

difference) is correct.  As mentioned earlier, in a practical situation, the different mass of human 

and sheep would obviously also have to be accounted for as well.  

4.3 Injury as a function of orientation towards the blast 

The Axelsson model is independent of orientation of the sheep. It does not matter if the subject is 

facing the blast or is right side-on, left side-on or has the back towards the blast. However, the 

Stuhmiller model is slightly dependent on the orientation of the subject towards the blast source, 

as explained in Appendix B.  
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Again, it is not obvious from the Stuhmiller equations how sensitive the model actually is to the 

orientation relative to the blast. To test this, it is again necessary to feed different BTD data into 

the model and compare the results.  

 

In a similar way to our investigation of the difference between human and sheep in Chapter 4.2, 

we will use the blast output from the numerical simulations of the Johnson experiments to do this. 

Again we are assuming a mass of 70 kg for both species, whereas in practise a human would 

typically be heavier than a sheep.  We emphasize that the idea is just to get an overview of the 

importance of the Stuhmiller orientation effect in some typical indoor blast situations, not to 

calculate lethality for a given sheep/human.  We want to get a feeling for whether the orientation 

effect can be large, small, negligible, is almost the same in every blast situation or differs greatly 

depending on the blast field. Note that in most Johnson experiments, the subject has been exposed 

relatively close to a reflecting wall.   

 

The results are shown in Figures 4.3-4.5 for both sheep and human.  In presenting the results, we 

have normalised the calculated irreversible work with respect to the right hand side orientation 

towards the blast source. Thus, if for one particular orientation, this ratio is above 1.00, it means 

that the right orientation gives lower value for W and is therefore safer than the other orientation.  

 

 

Figure 4.3 Comparison between left and right hand side orientation in the Johnson scenarios. 

 

We see that in most cases it does not matter much whether the sheep is oriented left or right.  This 

seems reasonable. However, for a human the difference is larger and sometimes there is a quite 

substantial difference between left and right orientation.  These are typically scenarios where 

either of the left or right hand was exposed to higher pressures than the other side.  We see that in 

the symmetric cases (between left and right), like A1-A3 and free field, the ratio is exactly 1.0, 

which is to be expected.  
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Figure 4.4 Comparison between front and right hand side orientation in the Johnson scenarios. 

 

In most cases, W(right) is larger than W(front) and thus it seems much safer to be facing the blast 

than being right side-on to the blast. In some cases, the difference can be very large.  In particular, 

for a sheep, in scenario A6 it is much more dangerous to be facing the blast. Note that in A6, for a 

man it would be the opposite, slightly more dangerous with the right side against the blast than 

the front side against the blast.  

 

In the free field situation (right data point) the main difference between the sheep and man 

becomes apparent. When the man is facing the blast source, the highest pressures is on the chest 

which also has the largest area of the three moving walls (twice as large as left and right side). 

The smallest pressure will be at the man’s back which does not contribute to the total work. If the 

man’s right side is facing the blast, a smaller area will be exposed to the highest pressure while 

his left side will be exposed to the smallest pressure, and his back (which does not contribute to 

W) will face the intermediate side-on pressure. 

 

For the sheep, the right and left side has twice the area of the abdomen (chest). Hence, for a sheep 

it is better to have the abdomen (chest) facing the blast source than the right (or left) side. 

 

  

Figure 4.5 Comparison between back and right hand side orientation in the Johnson scenarios. 
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Finally, in most cases, it is slightly better to have the back facing the blast wave than the right 

side.  However, there are two outliers, A85 and, especially, the free field experiment. In these 

cases it is enormously much safer to have the back facing the blast, both for sheep and human. 

 

To conclude, we see that it many cases the subject orientation is not that important in the 

Stuhmiller model either, with differences only being up to 20 %.  This is typical for indoor 

situations with the subject positioned relatively close to a wall, where the blast wave reflects and 

comes back at the BTD from different directions.  In these cases, it would be fair to say that the 

properties of the Stuhmiller model are similar to the Axelsson model. 

 

However, in some cases the orientation of the subject can be quite important, especially in the 

free field situation, which is very different from the Axelsson model.  The orientation part of the 

Stuhmiller model is only implemented through the fractional surfaces of the chest walls. No 

difference is implemented in the modified Lobdell model, which is based on assumptions. There 

is not much, if any, experimental data available with subject lethality for different orientations, so 

it is not possible to say whether the Axelsson or Stuhmiller model is correct regarding orientation.  

4.4 Relationship with the Axelsson model 

The Stuhmiller model calculates the normalised work, from which probabilities of injury and 

death can be calculated. The Axelsson model only calculates the degree of injury, ASII. In some 

cases one might be interested in probabilities and sometimes in degree of injury. It is therefore a 

natural question whether the Stuhmiller model could be extended to calculate the ASII or whether 

the Axelsson model could be extended to calculate the probability of injury/death.   

 

Such extensions could be easily achieved if there was a relationship between Stuhmiller’s injury 

parameter W and Axelsson’s injury parameter V. Such a relationship would not be exact and 

would also be a function of orientation and species, since, as we have just seen, the Stuhmiller 

model depends on these variables.  However, for one particular orientation and species, let us 

investigate whether W and V can be related. If so, relation for the other orientations would be 

trivial to find.   

 

We do this by returning once again to the Johnson experiments (against which both models are 

calibrated, though in a slightly different manner) and for each experimental configuration 

(geometry and charge) determine both W and V.  When these datapoints are plotted in a diagram, 

we can easily see how well they are correlated.  

 

This is done in Figure 4.6, for both human and sheep (assuming a mass of 70 kg and with right 

hand side facing the blast).  The “blue points” denote a calculation of W using sheep assumptions 

and the red points a calculation using “human assumptions” in the Stuhmiller model.  Since the 

Axelsson model is independent of species, only the x-coordinate will be different for sheep and 

human data points.   
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Figure 4.6 Relationship between Stuhmiller and Axelsson injury parameters. 

 

The figure clearly indicates that for a given V, the corresponding Stuhmiller parameter W can be 

quite accurately estimated.  Although there is some scattering of the data, it is not dramatic at all. 

Using Matlab, a curve fit was attempted on the following form:  

 
bV aW        (4.1) 

 

for both human and sheep. The coefficients which gave the best curve fit are shown in Table 4.1 

and the corresponding curves have been plotted in Figure 4.6. We note that there is not all that 

much difference between the human and sheep curve W(V) function, reinforcing our impression 

from Chapter 4.2.  

 

Table 4.1 Curve fit coefficients for Equation (4.1) for both sheep and human. 

 a b 

Sheep 46.38 0.4667 

Human 50.62 0.4786 

 

These derived relationships between W and V can now be inserted into Equations (3.10)-(3.13), 

either to calculate probability of death/injury as a function of V or to calculate ASII as a function 

of W.  This is done in Figure 4.7, which can be compared with Figure 3.4. (Note that for different 

orientations, the relationships will probably change slightly.) 
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Further, it is interesting to note that the curve fit for Equation (4.1) gives a relationship where the 

work W is almost proportional to the velocity V
2
. Such a relationship is what one would have 

expected from a dimensional analysis. 

 

 

Figure 4.7 Lethality as a function of Axelssons damage parameter V. (Full line = sheep, Dashed 

line = human) 

 

Note that the lethality curve in Figure 4.7 seems to agree quite well with Axelsson’s claim in his 

original paper (2) that V=12.8 m/s should correspond to 50% lethality. Closer inspection gives 

50% lethality according to the new curve at V=14.45 m/s for sheep and V=15.30 m/s for humans, 

both right side facing blast source.    

4.5 Comparison between Stuhmiller and Axelsson 

In this chapter we have investigated how much the differences between the Stuhmiller and 

Axelsson models mean in practise. This has been done by investigating the results that are 

produced when BTD blast data inside closed containers are used as input. In many cases there 

was not much difference between the Axelsson and Stuhmiller models. In fact, it seemed quite 

possible to find correlations between the injury parameters of each model, as we did in Chapter 

4.4. This enabled us to extend the Axelsson model to also calculate probabilities of injury and 

lethality.  In Table 4.2 we have summarised the most important properties of the Axelsson and 

Stuhmiller models. For completeness we have also included the Bowen injury curve. 
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Table 4.2 Main properties of the Axelsson, Stuhmiller and Bowen injury models. 

 Axelsson Stuhmiller Bowen 

Model parameter 4 chest wall 

velocities 

3 chest wall velocities None 

Model Four independent 

differential 

equations 

Three coupled 

differential equations (in 

practise almost 

uncoupled) 

None, pure curve fit 

to experimental data 

Injury parameter Average of the four 

maximum chest 

wall velocities 

Normalised irreversible 

work (sum of integral of  

complicated function of 

v with a weighing 

factor) 

Maximum amplitude 

P and duration of 

positive phase T. 

Species dependent No Yes, some difference 

between human and 

sheep. See Chapter 4.2 

No 

Orientation 

dependent 

No Yes, some difference for 

orientation. See Chapter 

4.3. 

Yes, different curves 

for standing and 

prone. 

5 Possible new injury models 

We have seen that there is a strong similarity between the Stuhmiller and Axelsson models. Their 

main difference lies in the differential equation and the injury parameter. However, there is no 

physical link between the given model and the chosen injury parameter. This means that, in 

theory, two other “modified” models could now easily be constructed, for example by using the 

Stuhmiller injury criterion for the Axelsson model and the Axelsson injury criterion for the 

Stuhmiller model. The two “modified” models are summed up in Table 5.1.  Of course, there are 

other possibilities, but these are very obvious candidates. 

 

Table 5.1 Modified injury models 

 Model parameter Model Injury parameter 

Axelsson (mod) 4 chest wall 

velocities 

Four independent 

differential equations  

Normalised irreversible 

work (sum of integral of  

complicated function of 

v with a weighing 

factor) 

Stuhmiller  (mod) 3 chest wall 

velocities 

Three coupled 

differential equations 

(in practise almost 

uncoupled) 

Average of the three 

maximum chest wall 

velocities 
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But, would these “modified” models be any better than the original models?  One way of finding 

out is to apply the Johnson blast pressure input data to them and compare their predictions with 

the measured ASII.  If there is less scattering in the data set, the models would be an 

improvement on the original models, and might be worth examining further. (Note that there will 

always be some scattering because the same experiment has given different values for ASII.) 

  

Therefore we will compare the scattering for all four models (i.e. original and modified 

Stuhmiller and Axelsson) when applied to the numerical Johnson data and measured ASII. To 

calculate the scattering we need to find the best possible curve fit for the ASII as a function of the 

injury parameter (W or V). It is not physically obvious what form this equation should take, so we 

will examine two cases that should be quite representative: 

 

 Second degree polynomial 2
1 2 3( )ASII x p x p x p    

 Power function ( ) bASII x ax c   

 

where x will be the injury variable (either V or W depending on model) and the other parameters 

are constants that will be determined by the best possible curve fit to the data. 

    

In Figure 5.1, the curve fits are shown together with the measured data for all models.  

 

 

 

Figure 5.1 Curve fit to data for the different injury models 
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The actual calculated coefficients are given in the Appendix A. Here we are only interested in the 

“goodness of fit” statistical parameters.  These are Sum Squared Error (SSE), Coefficient of 

determination (R
2
) and Root Mean Square Error (RMSE).   

 

The parameters SSE and RMSE should be as close to zero as possible, whereas R
2
 should be as 

close to 1.0 as possible.  All coefficients are shown in Table 5.2. 

 

Table 5.2 “Goodness of fit” parameters to the Johnson data for the four injury models. 

2
nd

 order 

polynomial 

V(Axelsson) W(Axelsson) W(Stuhmiller - 

right) 

V(Stuhmiller - 

right) 

SSE 181.5 197.1 178.0 160.2 

R2 0.6462 0.6158 0.6529 0.6877 

RMSE 0.8555 0.8914 0.8473 0.8037 

 

Power 

function 

V(Axelsson) W(Axelsson) W(Stuhmiller - 

right) 

V(Stuhmiller - 

right) 

SSE 180.6 198.0 177.6 159.2 

R2 0.6479 0.6141 0.6538 0.6897 

RMSE 0.8534 0.8934 0.8462 0.8012 

 

We note that the old models V(Axelsson) and W(Stuhmiller) have very similar “goodness of fit” 

parameters, with W(Stuhmiller) being marginally better (probably not significant). However, the 

new model V(Stuhmiller) is clearly better than both the old models for both curve fits. In contrast, 

the new model W(Axelsson) is clearly worse than the old models. This is also very obvious from 

Figure 5.1.  The modified Stuhmiller model might therefore be worth further examination. 

6 Comparison between Bowen, Axelsson and Stuhmiller 

So, the Axelsson and Stuhmiller models are very consistent when applied to the Johnson data. 

This is not surprising since both are calibrated to this data. In fact, if they were inconsistent for 

these data points, at least one of the models would have been seriously miscalibrated.  

 

However, that the models agree for this data set, does not mean that they will always agree. It can 

be interesting to see how the models compare when applied to data which have not been used in 

their calibration.  One such data set was used to derive the Bowen (3) curves, another injury 

criterion. The Bowen curves only give probabilities of injury or lethality for a given free field 

shock wave, for a given subject that is either exposed in an open field or near a wall.  To compare 

the Bowen curves with Stuhmiller and Axelsson, we need to define scenarios which according to 

the Bowen criterion should give 50 % lethality.  A BTD can then be (numerically) exposed to a 

shock wave from each defined scenario and the measured pressure data can be inserted into the 

Stuhmiller and Axelsson models to calculate the injury. 

 



 

  
  

 

FFI-rapport 2013/01501 29   

 

Like Axelsson, Bowen does not distinguish between human and animal. The only parameter 

describing the subject is the mass, with 70 kg being the standard value. We will therefore use this 

value here in this comparison. For Stuhmiller we will look at both sheep (exposed right side-on) 

and human (exposed with front chest wall towards the blast). 

 

Such scenarios have already been defined and tested for the Axelsson model in (1). Now the 

Stuhmiller model (including our modified version) and our modified Axelsson can be applied to 

these scenarios as well.  The scenarios are shown in Table 6.1.  We only look at near wall 

scenarios (which is what Bowen has data for – this is discussed in detail in (1)).   

 

Table 6.1 Scenarios which are investigated 

Mass of TNT 

charge 

BTD distance 

from charge 

0.5 kg 1.01 m 

1 kg 1.35 m 

9 kg 3.40 m 

20 kg 4.70 m 

200 kg 11.65 m 

400 kg 15.10 m 

1500 kg 24.50 m 

  

To compare the different injury models, we would like to use the same injury parameter. For the 

Stuhmiller model we can calculate the 50 % lethality directly from W through Equation (3.10).  

For the Axelsson model we can use the relationship between V and lethality derived earlier and 

shown in Figure 4.7. 

 

In the Modified Stuhmiller model, it is slightly more complicated to obtain the lethality, since this 

has not really been specified yet. One way is to proceed as follows: After finding the chest wall 

velocity V, we can use the curve fit in Figure 5.1 to calculate a corresponding ASII.  From this 

ASII we use Axelsson’s old ASII(V) equation to find an “artificial” chest wall velocity that would 

have given the same ASII in the original Axelsson model. And then we use the same method as 

above for the Axelsson model to derive the corresponding 50 % lethality. 

 

Things have not been quite specified in the Modified Axelsson model either.  We proceed in a 

similar way to our approach with the Modified Stuhmiller model.  After the irreversible work W 

has been derived, we can use the curve fit in Figure 5.1 to find a corresponding ASII value. Then 

an “artificial” chest wall velocity can be derived according to Axelsson’s old ASII(V) equation. 

Then the same method as above for the Axelsson model is used to derive the corresponding 50 % 

lethality.    

 

Using these procedures, we obtain the results which are shown in Figure 6.1. 
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A couple of points are worth noting: 

 

 In all cases the 50 % lethality is underestimated by all formulas compared with Bowen. 

Especially for short durations the formulas say that the scenarios are much less deadly 

than Bowen. However, this may be due to errors in the foundation of the Bowen curves, 

as has been discussed in detail elsewhere (1).  

 Since the lethality curve rises very rapidly exactly around the 50 % probability, only 

small changes in chest wall velocity or work will give a huge difference in lethality. 

Thus, a prediction of 30-40 % is not much different from 50 %. If the comparison had 

been expressed in terms of V or W instead of lethality, the correspondence with Bowen 

would have looked very close (see ref. (1) for this done with the Axelsson model).  

 The Modified Axelsson equation is in very poor agreement with Bowen and the other 

curves. We also saw that this did not fit the experimental Johnson data very well. Thus, 

this is probably not the way to go. 

 The regular Stuhmiller model approaches the Bowen formula for very long durations, but 

clearly is in worse agreement than Axelsson and Modified Stuhmiller for shorter 

durations. 

 Axelsson usually comes closest to Bowen, but there is not much difference between it 

and Modified Stuhmiller. 

 Modified Stuhmiller is clearly closer to Bowen than all other curves for short durations. It 

is also the most “stable” curve, giving almost the same lethality for every scenario except 

the very short ones (where Bowen is likely wrong). 
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 It would have been possible to calibrate the lethality predictions for the modified 

Stuhmiller and Axelsson to the Bowen results, instead of using the complicated approach 

with calculating an “artificial V” from the original Axelsson ASII(V) equation. 

 If this was done for the Modified Stuhmiller, we could obtain a model that was in almost 

total agreement with the lethality predictions of Bowen except for short durations, where 

Bowen is likely wrong. 

7 Conclusions 

The Stuhmiller model for blast wave injury due to blast waves has been studied. Although it has 

not been documented very well in literature, we were able to program the model in Matlab and 

study some of its properties.   

 

The Stuhmiller model has much in common with the Axelsson model, but has a different set of 

differential equations to solve and a different injury criterion. It also depends on the orientation of 

the subject (unlike Axelsson) and differentiates between human and sheep (unlike Axelsson and 

Bowen).    

 

It turned out that the Stuhmiller and Axelsson models had been calibrated to more or less the 

same data.  As a result it was possible to derive relationship between the irreversible work of 

Stuhmiller and the chest wall velocity of Axelsson. In this way, ASII could be calculated from the 

Stuhmiller model and probability of injury and lethality could be calculated from the Axelsson 

model. 

 

Further, it was noted that two new injury models could easily be derived, using either the 

calculated chest wall velocity from Stuhmiller or calculating the irreversible work using the 

Axelsson chest wall velocities.  In particular the Modified Stuhmiller model gave better 

agreement than any other model when applied to the Johnson data.  

 

Finally, all four models were compared with Bowen. Here the original Axelsson model and the 

Modified Stuhmiller model were in best agreement, which could indicate that chest wall velocity 

is a better parameter than the irreversible work. 

 

Using these four BTD models, several single point (SP) models can also be derived. However, 

this topic was seen as beyond the scope of the present study. 

 

From our study, the original Axelsson model and Modified Stuhmiller seems most promising. 

However, it is too early to conclude with certainty. A possible advantage with the Stuhmiller 

models is that they depend on whether the subject is human or sheep and on the orientation. This 

may seem reasonable, but on the other hand, no experiments have actually been performed to 

verify this. Clearly more research is needed on this important topic.  Further work may also look 

into the single point (SP) procedures applied to the (Modified) Stuhmiller model. 
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Appendix A Curve fit parameters 

In Table A.1 we present the full curve fit functions to the Johnson data for the various injury 

models. 

 

 Second degree polynomial: 2
1 2 3( )ASII x p x p x p    

 Power function: ( ) bASII x ax c   

 

Table A.1 Curve fit parameters to Johnson data 

 V(Axelsson) W(Axelsson) W(Stuhmiller) V(Stuhmiller) 

p1 0.006491 -33.93 -253 0.01517 

p2 0.2409 25.66 77.35 0.267 

p3 -0.6041 -0.03901 -0.009945 -0.457 

a 0.1386 10.76 34.04 0.1622 

b 1.316 0.6089 0.7732 1.396 

c -0.4095 -0.4849 -0.1828 -0.2885 
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Appendix B Orientation of BTD and the modified Lobdell 
model 

The pressure traces used as input to calculate the chest wall velocities is measured by a blast test 

device (BTD). The four pressure traces from a BTD are PF(t), PL(t), PR(t) and PB(t); that is the 

front gauge (which is pointing towards the explosion) and the left, right and back gauge 

respectively.  

 

Which of these four pressure traces that are used as P2(t) and P3(t) in the calculations (see section 

3.1), depends on the subject’s orientation and which chest wall velocity (anterior, left or right) 

that are being calculated.  

B.1 Man 

Standard orientation for man is an upright position with anterior chest wall facing blast source. 

An overview of how the man’s various orientations influence the input to the modified Lobdell 

model is given in the table below. 

 

 

Figure B.1 The Lobdell model compared to the contour of man. Head is pointing out of plane. 

 

Table B.1 Overview of the various orientations for man, and which pressure trace from the 

BTD to be used as P2(t) and P3(t) when calculating the chest wall velocity of the 

anterior, left and right side of the modified Lobdell model. It is assumed that PF(t) 

trace on the BTD is always facing the explosion. 

  Chest wall calculation  

(Modified Lobdell model) 

  Anterior Left Right 

  P2(t) P3(t) P2(t) P3(t) P2(t) P3(t) 

In
p
u
t 

tr
ac

es
 

fr
o
m

 B
T

D
 Front side of body facing explosion PF(t) PB(t) PL(t) PR(t) PR(t) PL(t) 

Left side of body facing explosion PR(t) PL(t) PF(t) PB(t) PB(t) PF(t) 

Right side of body facing explosion PL(t) PR(t) PB(t) PF(t) PF(t) PB(t) 

Back side facing explosion PB(t) PF(t) PR(t) PL(t) PL(t) PR(t) 
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B.2 Sheep 

A sheep does not stand on two legs like human being. When a sheep is facing the blast source, 

that generally means that the head is pointing towards the blast source while all four feet still are 

on the ground. This would however lead to an orientation where all three moving chest walls and 

the back of the sheep feel a side-on pressure.  However, if the right or left side of the sheep is 

facing the blast source, the same situations for the pressure loading is found for sheep and man.  

 

 

Figure B.2 The Lobdell model compared to the contour of a sheep. Head is pointing out of 

plane. 

 

For the sheep’s orientation, the INJURY 8.3 software is ambiguous compared to Figure B.2. 

When selecting “Front Side Facing Blast”, the red arrow indicating direction of propagation of 

pressure wave is pointing towards the PB in the figure above and opposite for “Back Side Facing 

Blast”. Similar we find an interchange for “Left …” and “Right Side Facing Blast” unless the 

orientation of the sheep’s head in INJRUY 8.3 sofware is pointing into the plane and not out of 

the plane as in the figure above. 

 

To terminate all confusions we have used the definition found in Figure B.2, which is given in the 

original paper (11) and which is identical to the definition of man’s orientation. Hence, the input 

scheme given in Table B.1 is valid also for sheep in the in-house Matlab script.  

 

Therefore, if the anterior (or front) chest wall is facing blast, the sheep is found hanging by its 

neck with all four legs pointing towards the blast source. It is not verified if this is the convention 

used by the authors, nor is it confirmed that this is the true scheme implemented in INJURY 8.3.  
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Appendix C INJURY 8.3 and in-house Matlab-routine 

This appendix presents the INJURY software developed by USA MRMC, and the in-house 

matlab program developed at FFI. 

C.1 Software: INJURY 8.3 

 

Figure C.1 INJURY 8.3 software. 

 

The latest version of Stuhmiller’s injury model is implemented in the computer program INJURY 

8.3, which FFI has been able to obtain The interface of the software is shown in Figure C.1. 

 

The required input is the blast loading, species, body mass, the number of shots, atmospheric 

pressure and end time. The output of the calculation is the total normalized work, and the 

probabilities for having a certain injury severity: "none", "trace", "slight", "moderate" and 

"severe". It also predicts the probability of lethality. 

 

During use, a number of issues and bugs with INJURY 8.3 were identified.  Through 

correspondence with the support team, workarounds were found that enabled the code to be 

applied. 

 

When using INJURY 8.3, the following is very important: 

 

 Computer settings for region and language must be set to “English” to enable the data 

files to be loaded. (This is found under  “Control panel > Region and Language > 

Formats” and affects the whole computer). 
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 Blast input data must be overpressure only.  If the blast data includes the ambient 

pressure, this pressure must be subtracted before loading the data into INJURY 8.3. 

 The “stop time” for the blast wave data should not be set to the actual duration of the 

blast wave, but to a much higher value. 

 Before loading the data file into INJURY 8.3, some data points with zero pressure should 

be added artificially to the end of the data file. 

 The orientation of sheep is ambiguous. 

C.2 In-house Matlab routine 

Through thorough investigation of (11) combined with good support from the authors and support 

team, the “evolved” Stuhmiller model was implemented as a Matlab routine.  

 

This made it much simpler to run many calculations in batch mode as the input and output 

formats could be tailored to achieve this. 

 

Model implementation was also more convenient to use for research purposes, since all 

parameters (especially chest wall velocity) became available, and since we easily could make 

modifications to the code and see what impact this has on the results. 

 

After programming the Matlab code, the results were compared with INJURY 8.3 showing very 

good agreement. Thus, the implementation was validated.   

 

Examples of graphical output from the Matlab routine are given in the following figures.  
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Figure C.2 Plot of chest wall displacement and thorax displacement for all three independent 

calculations of the chest wall velocity. 

 

 

Figure C.3 The chest wall velocity of the anterior (chest), left and right chest wall.  
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Figure C.4 Calculated irreversible work for the three moving chest wall, and the averaged total 

irreversible work used to find the probability of injury and lethality. 

 

 

Figure C.5 The probability of injury (for each injury category) and lethality.  
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