Show simple item record

dc.contributor.authorBakken, Erik Makinoen_GB
dc.contributor.authorWeisbart, Daviden_GB
dc.date.accessioned2019-07-29T11:48:41Z
dc.date.accessioned2019-10-15T08:37:43Z
dc.date.available2019-07-29T11:48:41Z
dc.date.available2019-10-15T08:37:43Z
dc.date.issued2019-05-25
dc.identifier.citationBakken EMB, Weisbart D. p-Adic Brownian Motion as a Limit of Discrete Time Random Walks. Communications in Mathematical Physics. 2019;369(2):371-402en_GB
dc.identifier.urihttp://hdl.handle.net/123456789/94299
dc.identifier.urihttp://hdl.handle.net/20.500.12242/2628
dc.descriptionBakken, Erik Makino; Weisbart, David. p-Adic Brownian Motion as a Limit of Discrete Time Random Walks. Communications in Mathematical Physics 2019 ;Volum 369.(2) s. 371-402 FFen_GB
dc.description.abstractAbstract. The p-adic di usion equation is a pseudo di erential equation that is formally analogous to the real di usion equation. The fundamental solutions to pseudo di erential equations that generalize the p-adic di usion equation give rise to p-adic Brownian motions. We show that these stochastic processes are similar to real Brownian motion in that they arise as limits of discrete time random walks on grids. While similar to those in the real case, the random walks in the p-adic setting are necessarily non-local. The study of discrete time random walks that converge to Brownian motion provides intuition about Brownian motion that is important in applications and such intuition is now available in a non-Archimedean setting.en_GB
dc.language.isoenen_GB
dc.subjectTermSet Emneord::Fysikken_GB
dc.subjectTermSet Emneord::Kvanteteorien_GB
dc.titlep-Adic Brownian Motion as a Limit of Discrete Time Random Walksen_GB
dc.date.updated2019-07-29T11:48:41Z
dc.identifier.cristinID1709417
dc.identifier.doi10.1007/s00220-019-03447-y
dc.source.issn0010-3616
dc.source.issn1432-0916
dc.type.documentJournal article
dc.relation.journalCommunications in Mathematical Physics


Files in this item

This item appears in the following Collection(s)

Show simple item record