Show simple item record

dc.contributor.authorJozwicki, Dorotaen_GB
dc.contributor.authorSharma, Puneeten_GB
dc.contributor.authorMann, Ingriden_GB
dc.contributor.authorHoppe, Ulf-Peter Jürgenen_GB
dc.date.accessioned2022-06-23T07:57:45Z
dc.date.accessioned2022-06-27T11:45:23Z
dc.date.available2022-06-23T07:57:45Z
dc.date.available2022-06-27T11:45:23Z
dc.date.issued2022-06-22
dc.identifier.citationJozwicki, Sharma, Mann, Hoppe. Segmentation of PMSE data using random forests. Remote Sensing. 2022en_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/3048
dc.descriptionRemote Sensing 2022 ;Volum 14.(13) s.en_GB
dc.description.abstractEISCAT VHF radar data are used for observing, monitoring, and understanding Earth’s upper atmosphere. This paper presents an approach to segment Polar Mesospheric Summer Echoes (PMSE) from datasets obtained from EISCAT VHF radar data. The data consist of 30 observations days, corresponding to 56,250 data samples. We manually labeled the data into three different categories: PMSE, Ionospheric background, and Background noise. For segmentation, we employed random forests on a set of simple features. These features include: altitude derivative, time derivative, mean, median, standard deviation, minimum, and maximum values corresponding to neighborhood sizes ranging from 3 by 3 to 11 by 11 pixels. Next, in order to reduce the model bias and variance, we employed a method that decreases the weight applied to pixel labels with large uncertainty. Our results indicate that, first, it is possible to segment PMSE from the data using random forests. Second, the weighted-down labels technique improves the performance of the random forests method.en_GB
dc.language.isoenen_GB
dc.subjectRadaren_GB
dc.subjectAtmosfærenen_GB
dc.titleSegmentation of PMSE data using random forestsen_GB
dc.typeArticleen_GB
dc.date.updated2022-06-23T07:57:45Z
dc.identifier.cristinID2032781
dc.identifier.doi10.3390/rs14132976
dc.relation.projectIDNorges forskningsråd: 275503
dc.source.issn2072-4292
dc.type.documentJournal article
dc.relation.journalRemote Sensing


Files in this item

This item appears in the following Collection(s)

Show simple item record