Show simple item record

dc.contributor.authorAkhtar, Jabranen_GB
dc.date.accessioned2023-06-20T11:06:11Z
dc.date.accessioned2023-06-21T06:13:45Z
dc.date.available2023-06-20T11:06:11Z
dc.date.available2023-06-21T06:13:45Z
dc.date.issued2023-05-05
dc.identifier1588
dc.identifier.citationAkhtar J. High-Resolution Neural Network Processing of LFM Radar Pulses. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. 2023en_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/3198
dc.descriptionAkhtar, Jabran. High-Resolution Neural Network Processing of LFM Radar Pulses. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing 2023en_GB
dc.description.abstractIn radar applications, the bandwidth of a transmitted pulse determines the range resolution and the ability to disclose densely spaced targets. The processing of radar signals is often carried out through matched filtering (MF) which aims to maximize the signal to noise ratio. This work presents an alternative processing scheme for oversampled radar signals based on small-sized neural networks. The networks are trained with an objective to return MF outcomes corresponding to a higher bandwidth pulse. The article demonstrates how such a neural network design can be constructed and compares against traditional processing and detection.en_GB
dc.language.isoenen_GB
dc.relation.urihttps://ieeexplore.ieee.org/document/10095034
dc.subjectRadaren_GB
dc.subjectMaskinlæringen_GB
dc.subjectDeteksjonen_GB
dc.subjectAdaptive filteren_GB
dc.titleHigh-Resolution Neural Network Processing of LFM Radar Pulsesen_GB
dc.date.updated2023-06-20T11:06:11Z
dc.identifier.cristinID2155843
dc.identifier.doi10.1109/ICASSP49357.2023.10095034
dc.source.issn1520-6149
dc.source.issn2379-190X
dc.type.documentJournal article
dc.relation.journalProceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing


Files in this item

This item appears in the following Collection(s)

Show simple item record