Show simple item record

dc.contributor.authorOrescanin, Marcoen_GB
dc.contributor.authorHarrington, Brianen_GB
dc.contributor.authorOlson, Derek R.en_GB
dc.contributor.authorGeilhufe, Marcen_GB
dc.contributor.authorHansen, Roy Edgaren_GB
dc.contributor.authorWarakagoda, Narada Dilpen_GB
dc.date.accessioned2024-02-21T11:57:48Z
dc.date.accessioned2024-09-25T06:36:44Z
dc.date.available2024-02-21T11:57:48Z
dc.date.available2024-09-25T06:36:44Z
dc.date.issued2023-10-20
dc.identifier.citationOrescanin, Harrington, Olson DR, Geilhufe MG, Hansen RE, Warakagoda ND. A Study on the Effect of Commonly Used Data Augmentation Techniques on Sonar Image Artifact Detection Using Deep Neural Networks. IEEE International Geoscience and Remote Sensing Symposium proceedings. 2023:360-363en_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/3315
dc.descriptionOrescanin, Marco; Harrington, Brian; Olson, Derek R.; Geilhufe, Marc; Hansen, Roy Edgar; Warakagoda, Narada Dilp. A Study on the Effect of Commonly Used Data Augmentation Techniques on Sonar Image Artifact Detection Using Deep Neural Networks. IEEE International Geoscience and Remote Sensing Symposium proceedings 2023 s. 360-363en_GB
dc.description.abstractThis paper presents an empirical study that evaluates the impact of different types of augmentations on the performance of Deep Learning (DL) models for detecting imaging artifacts in Synthetic Aperture Sonar (SAS) imagery. Despite the popularity of using DL in the SAS community, the impact of augmentations that violate the geometry and physics of SAS has not been fully explored. To address this gap, we developed a unique dataset for detecting imaging artifacts in SAS imagery with DL and trained a Bayesian neural network with a ResNet architecture using widely used augmentations in DL for computer vision, as well as common augmentations used in the SAS literature. The study shows that augmentations that violate the geometry and imaging physics of SAS can negatively impact supervised classification, but can sometimes improve performance. Overall, the study provides important insights into the impact of different types of augmentations on the performance of DL models in SAS applications.en_GB
dc.language.isoenen_GB
dc.subjectSyntetisk apertur-sonaren_GB
dc.subjectDyp læringen_GB
dc.titleA Study on the Effect of Commonly Used Data Augmentation Techniques on Sonar Image Artifact Detection Using Deep Neural Networksen_GB
dc.date.updated2024-02-21T11:57:48Z
dc.identifier.cristinID2216036
dc.identifier.doi10.1109/IGARSS52108.2023.10282626
dc.source.issn2153-6996
dc.source.issn2153-7003
dc.type.documentJournal article
dc.relation.journalIEEE International Geoscience and Remote Sensing Symposium proceedings


Files in this item

This item appears in the following Collection(s)

Show simple item record